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CHAPTER 0

Introduction: What Is Logic?

Mathematical logic is the study of mathematical reasoning. We do this by
developing an abstract model of the process of reasoning in mathematics. We then
study this model and determine some of its properties.

Mathematical reasoning is deductive; that is, it consists of drawing (correct)
inferences from given or already established facts. Thus the basic concept is that
of a statement being a logical consequence of some collection of statements. In
ordinary mathematical English the use of “therefore” customarily means that the
statement following it is a logical consequence of what comes before.

Every integer is either even or odd; 7 is not even; therefore 7 is
odd.

In our model of mathematical reasoning we will need to precisely define logical
consequence. To motivate our definition let us examine the everyday notion. When
we say that a statement σ is a logical consequence of (“follows from”) some other
statements θ1, . . . , θn, we mean, at the very least, that σ is true provided θ1, . . . , θn
are all true.

Unfortunately, this does not capture the essence of logical consequence. For
example, consider the following:

Some integers are odd; some integers are prime; therefore some
integers are both odd and prime.

Here the hypotheses are both true and the conclusion is true, but the reasoning
is not correct.

The problem is that for the reasoning to be logically correct it cannot depend
on properties of odd or prime integers other than what is explicitly stated. Thus
the reasoning would remain correct if odd, prime, and integer were changed to
something else. But in the above example if we replaced prime by even we would
have true hypotheses but a false conclusion. This shows that the reasoning is false,
even in the original version in which the conclusion was true.

The key observation here is that in deciding whether a specific piece of rea-
soning is or is not correct we must consider alMathematical logic is the study of
mathematical reasoning. We do this by developing an abstract model of the process
of reasoning in mathematics. We then study this model and determine some of its
properties.

Mathematical reasoning is deductive; that is, it consists of drawing (correct)
inferences from given or already established facts. Thus the basic concept is that of a
statement being a logical consequence of some collection of statements. In ordinary
mathematical English the use of “therefore” customarily means that the statement
following it is a logical consequence of what l ways of interpreting the undefined
concepts—integer, odd, and prime in the above example. This is conceptually easier
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2 0. INTRODUCTION: WHAT IS LOGIC?

in a formal language in which the basic concepts are represented by symbols (like
P , Q) without any standard or intuitive meanings to mislead one.

Thus the fundamental building blocks of our model are the following:

(1) a formal language L,
(2) sentences of L: σ, θ, . . .,
(3) interpretations for L: A,B, . . .,
(4) a relation |= between interpretations for L and sentences of L, with A |= σ

read as “σ is true in the interpretation A,” or “A is a model of σ.”

Using these we can define logical consequence as follows:

Definition -1.1. Let Γ = {θ1, . . . , θn} where θ1, . . . , θn are sentences of L, and
let σ be a sentence of L. Then σ is a logical consequence of Γ if and only if for
every interpretation A of L, A |= σ provided A |= θi for all i = 1, . . . , n.

Our notation for logical consequence is Γ |= σ.
In particular note that Γ 6|= σ, that is, σ is not a logical consequence of Γ, if

and only if there is some interpretation A of L such that A |= θi for all θi ∈ Γ but
A 6|= σ, A is not a model of σ.

As a special limiting case note that ∅ |= σ, which we will write simply as |= σ,
means that A |= σ for every interpretation A of L. Such a sentence σ is said to be
logically true (or valid).

How would one actually show that Γ |= σ for specific Γ and σ? There will
be infinitely many different interpretations for L so it is not feasible to check each
one in turn, and for that matter it may not be possible to decide whether a par-
ticular sentence is or is not true on a particular structure. Here is where another
fundamental building block comes in, namely the formal analogue of mathematical
proofs. A proof of σ from a set Γ of hypotheses is a finite sequence of statements
σ0, . . . , σk where σ is σk and each statement in the sequence is justified by some
explicitly stated rule which guarantees that it is a logical consequence of Γ and the
preceding statements. The point of requiring use only of rules which are explicitly
stated and given in advance is that one should be able to check whether or not a
given sequence σ0, . . . , σk is a proof of σ from Γ.

The notation Γ ` σ will mean that there is a formal proof (also called a deduc-
tion or derivation) of σ from Γ. Of course this notion only becomes precise when
we actually give the rules allowed.

Provided the rules are correctly chosen, we will have the implication

if Γ ` σ then Γ |= σ.

Obviously we want to know that our rules are adequate to derive all logical
consequences. That is the content of the following fundamental result:

Theorem -1.1 (Completeness Theorem (K. Gödel)). For sentences of a first-
order language L, we have Γ ` σ if and only if Γ |= σ.

First-order languages are the most widely studied in modern mathematical
logic, largely to obtain the benefit of the Completeness Theorem and its applica-
tions. In these notes we will study first-order languages almost exclusively.

Part ?? is devoted to the detailed construction of our “model of reasoning” for
first-order languages. It culminates in the proof of the Completeness Theorem and
derivation of some of its consequences.
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Part ?? is an introduction to Model Theory. If Γ is a set of sentences of L,
then Mod(Γ), the class of all models of Γ, is the class of all interpretations of L
which make all sentences in Γ true. Model Theory discusses the properties such
classes of interpretations have. One important result of model theory for first-order
languages is the Compactness Theorem, which states that if Mod(Γ) = ∅ then there
must be some finite Γ0 ⊆ Γ with Mod(Γ0) = ∅.

Part ?? discusses the famous incompleteness and undecidability results of G’odel,
Church, Tarski, et al. The fundamental problem here (the decision problem) is
whether there is an effective procedure to decide whether or not a sentence is logi-
cally true. The Completeness Theorem does not automatically yield such a method.

Part ?? discusses topics from the abstract theory of computable functions (Re-
cursion Theory).





Part 1

Elementary Logic





CHAPTER 1

Sentential Logic

0. Introduction

Our goal, as explained in Chapter 0, is to define a class of formal languages
whose sentences include formalizations of the sttements commonly used in math-
ematics and whose interpretatins include the usual mathematical structures. The
details of this become quite intricate, which obscures the “big picture.” We there-
fore first consider a much simpler situation and carry out our program in this
simpler context. The outline remains the same, and we will use some of the same
ideas and techniques–especially the interplay of definition by recursion and proof
by induction–when we come to first-order languages.

This simpler formal language is called sentential logic. In this system, we ignore
the “internal” structure of sentences. Instead we imagine ourselves as given some
collection of sentences and analyse how “compound” sentences are built up from
them. We first see how this is done in English.

If A and B are (English) sentences then so are “A and B”, “A or B”, “A implies
B”, “if A then B”, “A iff B”, and the sentences which assert the opposite of A and
B obtained by appropriately inserting “not” but which we will express as “not A”
and “not B”.

Other ways of connecting sentences in English, such as “A but B” or “A unless
B”, turn out to be superfluous for our purposes. In addition, we will consider
“A implies B” and “if A then B” to be the same, so only one will be included in
our formal system. In fact, as we will see, we could get by without all five of the
remaining connectives. One important point to notice is that these constructions
can be repeated ad infinitum, thus obtaining (for example):

“if (A and B) then (A implies B)”,
“A and (B or C)”,
“(A and B) or C”.

We have improved on ordinary English usage by inserting parentheses to make
the resulting sentences unambiguous.

Another important point to note is that the sentences constructed are longer
than their component parts. This will have important consequences in our formal
system.

In place of the English language connectives used above, we will use the fol-
lowing symbols, called sentential connectives.
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8 1. SENTENTIAL LOGIC

English word Symbol Name
and ∧ conjunction
or ∨ disjunction

implies → implication
iff ↔ biconditional

not ¬ negation

1. Sentences of Sentential Logic

To specify a formal language L, we must first specify the set of symbols of L.
The expressions of Lare then just the finite sequences of symbols of L. Certain
distinguished subsets of the set of expressions are then defined which are studied
because they are “meaningful” once the language is intepreted. The rules deter-
mining the various classes of meaningful expressions are sometimes referred to as
the syntax of the language.

The length of an expression α, denoted lh(α), is the length of α as a sequence
of symbols. Expressions α and β are equal, denoted by α = β, if and only if α
and β are precisely the same sequence–that is, they have the same length and for
each i the ith term of α is the same symbol as the ith term of β. We normally
write the sequence whose successive terms are ε0, ε1, . . . , εn as ε0ε1 . . . εn. This is
unambiguous provided no symbol is a finite sequence of other symbols, which we
henceforth tacitly assume.

In the formal language S for sentential logic, we will need symbols (infinitely
many) for the sentences we imagine ourselves as being given to start with. We
will also need symbols for the connectives discussed in the previous section and
parentheses for grouping. The only “meaningful” class of expressions of S we will
consider is the set of sentences, which will essentially be those expressions built up
in the way indicated in the previous section.

Thus we proceed as follows.

Definition 1.1. The symbols of the formal system S comprise the following:
1) a set of sentence symbols: S0, S1, . . . , Sn, . . . for all n ∈ ω
2) the sentential connectives: ∧,∨,→,↔
3) parentheses: (, )

We emphasize that any finite sequence of symbols of S is an expression of S.
For example:

))(¬S17¬
is an expression of length 6.

Definition 1.2. The set Sn of sentences of S is defined as follows:
1) Sn ∈ Sn for all n ∈ ω
2) if φ ∈ Sn then (¬φ) ∈ Sn
3) if φ, ψ ∈ Sn then (φ ? ψ) ∈ Sn where ? is one of ∧,∨,→,↔
4) nothing else is in Sn

To show that some expression is a sentence of S we can explicitly exhibit each
step it its construction according to the definition. Thus

((S3 ∧ (¬S1))→ S4) ∈ Sn
since it is constructed as follows:

S4, S1, (¬S1), S3, (S3 ∧ (¬S1)), ((S3 ∧ (¬S1))→ S4).
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Such a sequence exhibiting the formation of a sentence is called a history of the
sentence. In general, a history is not unique since the ordering of (some) sentences
in the sequence could be changed.

The fourth clause in the definition is really implicit in the rest of the definition.
We put it in here to emphasize its essential role in determining properties of the
set Sn. Thus it implies (for example) that every sentence satisfies one of clauses
1), 2), or 3). For example, if σ ∈ Sn and lh(σ) > 1 then σ begins with ( and ends
with ). So ¬S17 /∈ Sn. Similarly, (¬S17¬) /∈ Sn since if it were it would necessarily
be (¬φ) for some φ ∈ Sn; this can only happen if φ = S17¬, and S17¬ /∈ Sn since
it has length greater than 1, but has no parentheses.

The set Sn of sentences was defined as the closure of some explicitly given set
(here the set of all sentence symbols) under certain operations (here the operations
on expressions which lead from α, β to (α ∧ β), etc.). Such a definition is called
a definition by recursion. Note also that in this definition the operations produce
longer expressions. This has the important consequence that we can prove things
about sentences by induction on their length. Our first theorem gives an elegant
form of induction which has the advantage (or drawback, depending on your point
of view) of obscuring the connection with length.

Theorem 1.1. Let X ⊆ Sn and assume that (a) Sn ∈ X for all n ∈ ω, and (b)
if φ, ψ ∈ X then (¬φ) and (φ ? ψ) belong to X for each binary connective ?. Then
X = Sn.

Proof. Suppose X 6= Sn. Then Y = (Sn − X) 6= ∅. Let θ0 ∈ Y be such
that lh(θ0) ≤ lh(θ) for every θ ∈ Y . Then θ0 6= Sn for any n ∈ ω, by (a), hence
θ0 = (¬φ) or θ0 = (φ ? ψ) for sentences φ and ψ and some connective ?. But then
lh(φ), lh(ψ) < lh(θ0) so by choice of θ0, we have φ, ψ ∈ Y , i.e. φ, ψ ∈ X. But then
(b) implies that θ0 ∈ X, a contradiction. �

As a simple application we have the following.

Corollary 1.2. A sentence contains the same number of left and right paren-
theses.

Proof. Let pl(α) be the number of left parentheses in a α and let pr(α) be
the number of right parentheses in α. Let X = {θ ∈ Sn| pl(θ) = pr(θ)}. Then
Sn ∈ X for all n ∈ ω since pl(Sn) = pr(Sn) = 0. Further, if φ ∈ X then (¬φ) ∈ X
since pl((¬φ)) = 1 + pl(φ), pr((¬φ)) = 1 + pr(φ), and pl(φ) = pr(φ) since φ ∈ X
(i.e. “by inductive hypothesis”). The binary connectives are handled similarly and
so X = Sn. �

The reason for using parentheses is to avoid ambiguity. We wish to prove that
we have succeeded. First of all, what–in this abstract context–would be considered
an ambiguity? If our language had no parentheses but were otherwise unchanged
then ¬S0 ∧ S1 would be considered a “sentence.” But there are two distinct ways
to add parentheses to make this into a real sentence of our formal system, namely
((¬S0) ∧ S1) and (¬(S0 ∧ S1)). In the first case it would have the form (α ∧ β)
and in the second the form (¬α). Similarly, S0 → S1 → S2 could be made into
either of the sentences ((S0 → S1)→ S2) or (S0 → (S1 → S2)). Each of these has
the form (α → β), but for different choices of α and β. What we mean by lack
of ambiguity is that no such “double entendre” is possible, that we have instead
unique readability for sentences.
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Theorem 1.3. Every sentence of length greater than one has exactly one of the
forms: (¬φ), (φ ∨ ψ), (φ ∧ ψ), (φ→ ψ), (φ↔ ψ) for exactly one choice of sentences
φ, ψ (or φ alone in the first form).

This result will be proved using the following lemma, whose proof is left to the
reader.

Lemma 1.4. No proper initial segment of a sentence is a sentence. (By a
proper initial segment of a sequence ε0ε1 . . . εn−1 is meant a sequence ε0ε1 . . . εm−1,
consisting of the first m terms for some m < n).

Proof. (of the Theorem from the Lemma) Every sentence of length greater
than one has at least one of these forms, so we need only consider uniqueness.
Suppose θ is a sentence and we have

θ = (α ? β) = (α′ ?′ β′)

for some binary connectives ?, ?′ and some sentences α, β, α′, β′. We show that α =
α′, from which it follows that ? = ?′ and β = β′. First note that if lh(α) = lh(α′)
then α = α′ (explain!). If, say, lh(α) < lh(α′) then α is a proper initial segment of
α′, contradicting the Lemma. Thus the only possibility is α = α′. We leave to the
reader the easy task of checking when one of the forms is (¬φ). �

We in fact have more parentheses than absolutely needed for unique readability.
The reader should check that we could delete parentheses around negations–thus
allowing ¬φ to be a sentence whenever φ is–and still have unique readability. In
fact, we could erase all right parentheses entirely–thus allowing (φ∧ψ, (φ∨ψ, etc.
to be sentences whenever φ, ψ are–and still maintain unique readability.

In practice, an abundance of parentheses detracts from readability. We there-
fore introduce some conventions which allow us to omit some parentheses when
writing sentences. First of all, we will omit the outermost pair of parentheses, thus
writing ¬φ or φ∧ ψ in place of (¬φ) or (φ∧ ψ). Second we will omit the parenthe-
ses around negations even when forming further sentences–for example instead of
(¬S0) ∧ S1, we will normally write just ¬S0 ∧ S1. This convention does not cuase
any ambiguity in practice because (¬(S0 ∧ S1)) will be written as ¬(S0 ∧ S1). The
informal rule is that negation applies to as little as possible.

Building up sentences is not really a linear process. When forming (φ → ψ),
for example, we need to have both φ and ψ but the order in which they appear in
a history of (φ → ψ) is irrelevant. One can represent the formation of (φ → ψ)
uniquely in a two-dimensional fashion as follows:

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

By iterating this process until sentence symbols are reached one obtains a
tree representation of any sentence. This representation is unique and graphically
represents the way in which the sentence is constructed.

For example the sentence

((S7 ∧ (S4 → (¬S0)))→ (¬(S3 ∧ (S0 → S2))))

is represented by the following tree:

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

We have one final convention in writing sentences more readably. It is seldom
important whether a sentence uses the sentence symbols S0, S13, and S7 or S23, S6,
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and S17. We will use A, B, C, . . . (perhaps with sub- or superscripts) as variables
standing for arbitrary sentence symbols (assumed distinct unless explicitly noted
to the contrary). Thus we will normally refer to A→ (B → C), for example, rather
than S0 → (S17 → S13).

2. Truth Assignments

An interpretation of a formal language Lmust, at a minimum, determine which
of the sentences of Lare true and which are false. For sentential logic this is all that
could be expected. So an interpretation for S could be identified with a function
mapping Sn into the two element set {T, F}, where T stands for “true” and F for
“false.”

Not every such function can be associated with an interpretation of S, however,
since a real interpretation must agree with the intuitive (or, better, the intended)
meanings of the connectives. Thus (¬φ) should be true iff φ is false and (φ ∧ ψ)
shuld be true iff both φ and ψ are true. We adopt the inclusive interpretation of
“or” and therefore say that (φ ∨ ψ) is true if either (or both) of φ, ψ is true. We
consider the implication (φ → ψ) as meaning that ψ is true provided φ is true,
and therefore we say that (φ → ψ) is true unless φ is true and ψ is false. The
biconditional (φ↔ ψ) will thus be true iff φ, ψ are both true or both false.

We thus make the following definition.

Definition 2.1. An interpretation for S is a function t : Sn→ {T, F} satisfy-
ing the following conditions for all φ, ψ ∈ Sn:

(i) t((¬φ)) = T iff t(φ) = F ,
(ii) t((φ ∧ ψ)) = T iff t(φ) = t(ψ) = T ,
(iii) t((φ ∨ ψ)) = T iff t(φ) = T or t(ψ) = T (or both),
(iv) t((φ→ ψ)) = F iff t(φ) = T and t(ψ) = F , and
(v) t((φ↔ ψ)) iff t(φ) = t(ψ).

How would one specify an interpretation in practice? The key is the following
lemma, which is easily established by induction.

Lemma 2.1. Assume t and t′ are both interpretations for S and that t(Sn) =
t′(Sn) for all n ∈ ω. Then t(σ) = t′(σ) for all σ ∈ Sn.

So an interpretation is determined completely once we know its values on the
sentence symbols. One more piece of terminology is useful.

Definition 2.2. A truth assignment is a function h : {Sn| n ∈ ω} → {T, F}.

A truth assignment, then, can be extended to at most one interpretation. The
obvious question is whether every truth assignment can be extended to an inter-
pretation.

Given a truth assignment h, let’s see how we could try to extend it to an
interpretation t. Let σ ∈ Sn and let φ0, . . . , φn be a history of σ (so φn = σ). We
then can define t on each φi, 0 ≤ i ≤ n, one step at a time, using the requirements
in the definition of an interpretation; at the last step we will have defined t(σ).
Doing this for every σ ∈ Sn we end up with what should be an interpretation t.
The only way this could go wrong is if, in considering different histories, we were
forced to assign different truth values to the same sentence φ. But this could only
happen through a failure of unique readability.
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This argument can be formalized to yield a proof of the remaining half of the
following result.

Theorem 2.2. Every truth assignment can be extended to exactly one inter-
pretation.

Proof. Let h be a truth assignment. We outline how to show that h can be
extended to an interpretation t. The main fact to establish is:

(*) assume that hk(Sn) = h(Sn) for all n ∈ ω and hk : {σ ∈
Sn| lh(σ) ≤ k} → {T, F} satisfies (i)-(v) in the definition of
an interpretation for sentences in its domain; then hk can be
extended to hk+1 defined on {σ ∈ Sn| lh(σ) ≤ k+ 1} and which
also satisfies (i)-(v) in the definition of an interpretation for all
sentences in its domain.

Using this to define a chain

h = h1 ⊆ h2 ⊆ . . . ⊆ hk . . .

and we see that t =
⋃
{hk| k ∈ ω} is an interpretation, as desired. �

In filling in the details of this argument the reader should be especially careful
to see exactly where unique readability is used.

Definition 2.3. For any truth assignment h its unique extension to an inter-
preteation is denoted by h̄.

Given h and σ we can actually compute h̄(σ) by successively computing h̄(φi)
for each sentence φi in a history φ0, . . . , φn of σ. Thus if h(Sn) = F for all n ∈ ω we
successively see that h̄(S4) = F, h̄(S1) = F, h̄(¬S1) = T, h̄(S3) = F, h̄(S3 ∧S1) =
F, and finally h̄((S3∧S1)→ S4) = T . This process is particularly easy if σ is given
in tree form–h tells you how to assign T, F to the sentence symbols at the base of
the tree, and (i)-(v) of the definition of an interpretation tell you how to move up
the tree, node by node.

There are many situations in which we are given some function f defined on the
sentence symbols and want to extend it to all sentences satisfying certain conditions
relating the values at (¬φ), (φ ∧ ψ), etc. to its values at φ, ψ. Minor variations in
the argument for extending truth assignments to interpretations establish that this
can always be done. The resulting function is said to be defined by recursion , on
the class of sentences.

Theorem 2.3. Let X be any set, and let g¬ : X → X and g? : X ×X → X be
given for each binary connective ?. Let f : {Sn| n ∈ ω} → X be arbitrary. Then
there is exactly one function f̄ : Sn→ X such that

f̄(Sn) = f(Sn) for all n ∈ ω,
f̄(¬φ) = g¬(f̄(φ)) for all φ ∈ Sn,
f̄(φ ? ψ) = g?(f̄(φ), f̄(ψ)) for all φ, ψ ∈ Sn and binary connectives ?.

Even when we have an informal definition of a function on the set Sn, it
frequently is necessary to give a precise definition by recursion in order to study
the properties of the function.

Example 2.1. Let X = ω, f(Sn) = 0 for all n ∈ ω. Extend f to f̄ on Sn via
he recursion clauses
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f̄((¬φ)) = f̄(φ) + 1
f̄((φ ? ψ)) = f̄(φ) + f̄(ψ) + 1 for binary connectives ?.

We can then interpret f̄(θ) as giving any of the following:
the number of left parentheses in θ,
the number of right parentheses in θ,
the number of connectives in θ.

Example 2.2. Let φ0 be some fixed sentence. We wish to define f̄ so that f̄(θ)
is the result of replacing S0 throughout θ by φ0. This is accomplished by recursion,
by starting with f given by

f(Sn) =

{
φ0, n = 0
Sn, n 6= 0

and extending via the recursion clauses
f̄((¬φ)) = (¬f̄(φ)),
f̄((φ ? ψ)) = (f̄(φ) ? f̄(ψ)) for binary connectives ?.

For the function f̄ of the previous example, we note the following fact, estab-
lished by induction.

Lemma 2.4. Given any truth assignment h define h∗ by

h∗(Sn) =

{
h̄(φ0), n = 0
h(Sn), n 6= 0

Thus for any sentence θ we have h̄∗(θ) = h̄(f̄(θ)).

Proof. By definition of h∗ and f we see that h∗(Sn) = h̄(f(Sn)) for all n.
The recursion clauses yielding f̄ guarantees that this property is preserved under
forming longer sentences. �

Note that the essential part in proving that a sentence has the same number
of left parentheses as right parentheses was noting, as in Example 1.3.1, that these
two functions satisfied the same recursion clauses.

As is common in mathematical practice, we will frequently not distinguish
notationally between f and f̄ . Thus we will speak of defining f by recursion given
the operation of f on {Sn| n ∈ ω} and certain recursion clauses involving f .

3. Logical Consequence

Since we now know that every truth assignment h extends to a unique in-
terpretation, we follow the outline established in the Introduction using as our
fundamental notion the truth of a sentence under a truth assignment.

Definition 3.1. Let h be a truth assignment and θ ∈ Sn. Then θ is true
under h, written h |= θ, iff h̄(θ) = T where h̄ is the unique extension of h to an
interpretation.

Thus θ is not true under h, written h 6|= θ, iff h̄(θ) 6= T . Thus h 6|= θ iff
h̄(θ) = F iff h |= ¬θ.

We will also use the following terminology: h satisfies θ iff h |= θ.

Definition 3.2. A sentence θ is satisfiable iff it is satisfied by some truth
assignment h.
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We extend the terminology and notation to sets of sentences in the expected
way.

Definition 3.3. Let h be a truth assignment and Σ ⊆ Sn. Then Σ is true
under h, or h satisfies Σ, written h |= Σ, iff h |= σ for every σ ∈ Σ.

Definition 3.4. A set Σ of sentences is satisfiable iff it is satisfied by some
truth assignment h.

The definitions of logical consequence and (logical) validity now are exactly as
given in the Introduction.

Definition 3.5. Let θ ∈ Sn and Σ ⊆ Sn. Then θ is a logical consequence of
Σ written Σ |= θ, iff h |= θ for every truth assignment h which satisfies Σ.

Definition 3.6. A sentence θ is (logically) valid, or a tautology, iff ∅ |= θ, i.e.
h |= θ for every truth assignment h.

It is customary to use the word “tautology” in the context of sentential logic,
and reserve “valid” for the corresponding notion in first order logic. Our notation
in any case will be |= θ, rather than ∅ |= θ.

The following lemma, translating these notions into satisfiability, is useful and
immediate from the definitions.

Lemma 3.1. (a) θ is a tautology iff ¬θ is not satisfiable. (b) Σ |= θ iff Σ∪{¬θ}
is not satisfiable.

Although there are infinitely many (indeed uncountably many) different truth
assignments, the process of checking validity or satisfiability is much simpler bec-
dause only finitely many sentence symbols occur in any one sentence.

Lemma 3.2. Let θ ∈ Sn and let h, h∗ be truth assignments such that h(Sn) =
h∗(Sn) for all Sn in θ. Then h̄(θ) = h̄∗(θ), and thus h |= θ iff h∗ |= θ.

Proof. Let A1, . . . , An be sentence symbols, and let h, h∗ be truth assignments
so that h(Ai) = h∗(Ai) for all i = 1, . . . , n. We show by induction that for every
θ ∈ Sn, h̄(θ) = h̄∗(θ) provided θ uses no sentence symbols other than A1, . . . , An.
The details are straightforward. �

This yields a finite, effective process for checking validity and satisfiability of
sentences, and also logical consequences of finite sets of sentences.

Theorem 3.3. Let A1, . . . , An be sentence symbols. Then one can find a finite
list h1, . . . , hm of truth assignments such that for every sentence θ using no sentence
symbols other than A1, . . . , An we have: (a) |= θ iff hj |= θ for all j = 1, . . . ,m,
and (b) θ is satisfiable iff hj |= θ for some j, 1 ≤ j ≤ m. If further Σ is a set of
sentences using no sentence symbols other than A1, . . . , An then we also have: (c)
Σ |= θ iff hj |= θ whenever hj |= Σ, for each j = 1, . . . ,m.

Proof. Given A1, . . . , An we let h1, . . . , hm list all truth assignments h such
that h(Sk) = F for every Sk different from A1, . . . , An. There are exactly m = 2n

such, and they work by the preceding lemma. �

The information needed to check whether or not a sentence θ in the sentence
symbols A1, . . . , An is a tautology is conveniently represented in a table. Across the
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top of the table one puts a history of θ, beginning with A1, . . . , An, and each line
of the table corresponds to a different assignment of truth values to A1, . . . , An.

For example, the following truth table shows that (S3 ∧ ¬S1) → S4 is not a
tautology.

S1 S3 S4 ¬S1 S3 ∧ ¬S1 (S3 ∧ ¬S1)→ S4

T T T F F T
T T F F F T
T F T F F T
T F F F F T
F T T T T T
F T F T T F
F F T T F T
F F F T F T

Writing down truth tables quickly becomes tedious. Frequently shortcuts are
possible to reduce the drudgery. For example, if the question is to determine
whether or not some sentence θ is a tautology, suppose that h̄(θ) = F and work
backwards to see what h must be. To use the preceding example, we see that

h̄((S3 ∧ ¬S1)→ S4) = F

iff h̄((S3 ∧ ¬S1)) = T and h(S4) = F

and h̄((S3 ∧ ¬S1)) = T

iff h(S1) = f and h(S3) = T.

Thus this sentence is not a tautology since it is false for every h such that h(S1) = F ,
h(S3) = T , and h(S4) = F .

As another example, consider θ = (A→ B)→ ((¬A→ B)→ B). Then h̄(θ) =
F iff h̄(A → B) = T and h̄((¬A → B) → B = F . And h̄((¬A → B) → B) = F
iff h̄(¬A→ B) = T and h(B) = F . Now for h(B) = F we have h̄(A→ B) = T iff
h(A) = F and h̄(¬A → B) = T iff h(A) = T . Since we can’t have both h(A) = T
and h(a) = F we may conclude that θ is a tautology.

Some care is needed in such arguments to ensure that the conditions obtained
on h at the end are actually equivalent to h̄(θ). Otherwise some relevant truth
assignment may have escaped notice. Of course only the implications in one direc-
tion are needed to conclude θ is a tautology, and only the implications in the other
direction to conclude that such an h actually falsifies θ. But until you know which
conclusion holds, both implications need to be preserved.

An analogous process, except starting with the supposition h̄(θ) = T , can
be used to determine the satisfiability of θ. If Σ is the finite set {σ1, . . . , σk} of
sentences then one can check whether or not Σ |= θ by supposing h̄(θ) = F while
h̄(σi) = T for all i = 1, . . . , k and working backwards from these hypotheses.

An important variation on logical consequence is given by logical equivalence.

Definition 3.7. Sentences φ, ψ are logically equivalent, written φ `a ψ, iff
{φ} |= ψ and {ψ} |= φ.

Thus, logically equivalent sentences are satisfied by precisely the same truth
assignments, and we will think of them as making the same assertion in different
ways.

Some examples of particular interest to us invole writing one connective in
terms of another.
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Lemma 3.4. For any φ, ψ ∈ Sn we have:
(a) (φ→ ψ) `a (¬φ ∨ ψ)
(b) (φ ∨ ψ) `a (¬φ→ ψ)
(c) (φ ∨ ψ) `a ¬(¬φ ∧ ¬ψ)
(d) (φ ∧ ψ) `a ¬(¬φ ∨ ¬ψ)
(e) (φ ∧ ψ) `a ¬(φ→ ¬ψ)
(f) (φ↔ ψ) `a (φ→ ψ) ∧ (ψ → φ)

What we want to conclude, using parts (b), (e), and (f) of the above lemma is
that every sentence θ is logically equivalent to a sentence θ∗ using the same sentence
symbols but only the connectives ¬,→. This is indeed true, and we outline the steps
needed to prove ¬θ.

First of all, we must define (by recursion) the operation ∗ on sentences described
by saying that θ∗ results from θ by replacing subexpressions (φ∨ψ), (φ∧ψ), (φ↔ ψ)
of θ (for sentences φ, ψ) by their equivalents in terms of ¬,→ given in the lemma.

Secondly, we must prove (by induction) that for every truth assignment h and
every θ ∈ Sn we have h̄(θ) = h̄(θ∗).

Details of this, and similar substitution facts, are left to the reader.
Due to the equivalence (φ∨ψ)∨ θ `a φ∨ (ψ∨ θ) and (φ∧ψ)∧ θ `a φ∧ (ψ∧ θ),

we will omit the parentheses used for grouping conjunctions and disjunctions, thus
writing A ∨B ∨ C ∨D instead of ((A ∨B) ∨ C) ∨D.

Sentences written purely in terms of ¬,→ are not always readily understand-
able. Much preferable for some purposes are sentences written using ¬,∨,∧–
especially those in one of the following special forms:

Definition 3.8. (a) A sentence θ is in disjunctive normal form iff it is a
disjunction (θ1∨ θ2∨ . . .∨ θn) in which each disjunct θi is a conjugation of sentence
symbols and negations of sentence symbols. (b) A sentence θ is in conjunctive
normal form iff it is a conjunction (θ1 ∧ θ2 ∧ . . . ∧ θn) in which each conjunct θi is
a disjunction of sentence symbols and negations of sentence symbols.

The advantage of having a sentence in disjunctive normal form is that it is easy
to read off the truth assignments which statisfy it. For example

(A ∧ ¬B) ∨ (A ∧B ∧ ¬C) ∨ (B ∧ C)

is satisfied by a truth assignment h iff either h(A) = T and h(B) = F or h(A) =
h(B) = T and h(C) = F or h(B) = h(C) = T .

Theorem 3.5. Let θ be any sentence. Then there is a sentence θ∗ in disjunctive
normal form and there is a sentence θ∗∗ in conjunctive normal form such that

θ `a θ∗, θ `a θ∗∗.
Proof. Let A1, . . . , An be sentence symbols. For any X ⊆ {1, . . . , n} we define

θX to be (φ1 ∧ . . . ,∧φn) where φi = Ai if i ∈ x and φi = ¬Ai if i /∈ X. It is then
clear that a truth assignment h satisfies θX iff h(Ai) = T for i ∈ X and h(Ai) = F
for i /∈ X. Now, given a sentence θ built up using no sentence symbols other than
A1, . . . , An let θ∗ be the disjunction of all θX such that (θ ∧ θX) is satisfiable–
equivalently, such that |= (θX → θ). Then θ∗ is, by construction, in disjunctive
normal form and is easily seen to be equivalent to θ. If (θ ∧ θX) is not satisfiable
for any X then θ is not satisfiable, hence θ is equivalent to (A1 ∧ ¬A1) which is in
disjunctive normal form.

We leave the problem of finding θ∗∗ to the reader. �
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Note that using θX ’s, without being given any θ to begin with, we can form
sentences θ∗ with any given truth table in A1, . . . , An. Thus there are no “new”
connectives we could add to extend the expressive power of our system of sentential
logic.

4. Compactness

If Σ is a finite set of sentences then the method of truth tables gives an effective,
finite procedure for deciding whether or not Σ is satisfiable. Similarly one can decide
whether or not Σ |= θ for finite Σ ⊆ Sn. The situation is much different for infinite
sets of sentences. The Compactness Theorem does, however, reduce these questions
to the corresponding questions for finite sets. The Compactness Theorem in first
order logic will be one of our most important and useful results, and its proof in
that setting will have some similarities to the arguments in this section.

Theorem 4.1. (Compactness) Let Σ ⊆ Sn. (a) Σ is satisfiable iff every finite
Σ0 ⊆ Σ is satisfiable. (b) For θ ∈ Sn, Σ |= θ iff there is some finite Σ0 ⊆ Σ such
that Σ0 |= θ.

Part (b) follows from part (a) using part (b) of Lemma 1.4.1. The implication
from left to right in (a) is clear, so what needs to be shown is that Σ is satisfiable
provided every finite Σ0 ⊆ Σ is satisfiable. The problem, of course, is that different
finite subsets may be satisfied by different truth assignments and that, a priori,
there is no reason to assume that a single truth assignment will satisfy every finite
subset of Σ (equivalently, all of Σ).

Rather than taking the most direct path to this result, we will discuss in more
generality correspondences between interpretatins and the sets of sentences they
satisfy. In particular we look at the ways in which we could use a set Σ of sentences
to define a truth assignment h which satisfies it.

Given Σ, if we wish to define a particular truth assignment h which satisfies Σ
we must, for example, either set h(S0) = T or h(S0) = F . If S0 ∈ Σ then we must
make the first choice; if ¬S0 ∈ Σ we must make the second choice. The only case
in which we may be in doubt is if neither S0 nor ¬S0 belongs in Σ. But even here
we may be forced into one or the other choice, for example, if (S0 ∧ ¬S3) ∈ Σ or
(¬S0 ∧ S3) ∈ Σ.

Our definition of a complete set of sentences is intended to characterize those
for which we have no choice in defining a satisfying truth assignment and for which
we are not forced into contradictory choices.

Definition 4.1. A set Γ ⊆ Sn is complete iff the following hold for all φ, ψ ∈
Sn:

(i) (¬φ) ∈ Γ iff φ /∈ Γ,
(ii) (φ ∧ ψ) ∈ Γ iff φ ∈ Γ and ψ ∈ Γ,

(iii) (φ ∨ ψ) ∈ Γ iff φ ∈ Γ or ψ ∈ Γ,
(iv) (φ→ ψ) ∈ Γ iff (¬φ) ∈ Γ or ψ ∈ Γ,
(v) (φ↔ ψ) ∈ Γ iff either both φ, ψ ∈ Γ or both φ, ψ /∈ Γ.

Definition 4.2. Given a truth assignment h, T (h) = {σ ∈ Sn| h |= σ}.

Complete sets of sentences are exactly what we are after, as shown by the next
result.
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Theorem 4.2. A set Γ of sentences is complete iff Γ = T (h) for some truth
assignment h.

Proof. From right to left is clear because the clauses in the definition of
complete sets mimic the recursion clauses in extending h to h̄.

Conversely, if Γ is complete we define h by h(Sn) = T iff Sn ∈ Γ and show by
induction that a sentence θ belongs to Γ iff h̄(θ) = T . �

Since clearly two truth assignments h1, h2 are equal iff T (h1) = T (h2) we
have a one-to-one correspondence between truth assignments and complete sets of
sentences.

The relevance of this to proving the satisfiability of sets of sentences is the
following consequence.

Corollary 4.3. Let Σ ⊆ Sn. Then Σ is satisfiable iff there is some complete
set Γ of sentences such that Σ ⊆ Γ.

Thus our approach to showing that some set of sentences is satisfiable will be
to extend it to a complete set. For the specific purposes of showing compactness
we will need the following terminology.

Definition 4.3. A set Σ ⊆ Sn is finitely satisfiable iff every finite Σ0 ⊆ Σ is
satisfiable.

Thus our method in proving compactness will be to show that a finitely satis-
fiable set Σ of sentences can be extended to a complete set Γ. We will construct
this extension step-by-step, using the following lemma at each step.

Lemma 4.4. Assume Σ is finitely satisfiable and let θ be a sentence. Then at
least one of Σ ∪ {θ},Σ ∪ {¬θ} is fnitely satisfiable.

At the end of the construction the verification that the resulting set Γ is com-
plete will use the following two lemmas.

Lemma 4.5. Assume that Σn is finitely satisfiable and Σn ⊆ Σn+1 for all n ∈ ω.
Let Γ =

⋃
n∈ω Σn. Then Γ is finitely satisfiable.

Lemma 4.6. Assume that Γ is finitely satisfiable and for all sentences φ either
φ ∈ Γ or (¬φ) ∈ Γ. Then Γ is complete.

We leave the proofs of these lemmas to the reader and proceed to give the
construction.

First of all, since our formal system S has only countably many symbols and
every sentence is a finite sequence of symbols, it follows that Sn is a countable set,
so we may list it as Sn = {φn| n ∈ ω}.

Next we define, by recursion on n ∈ ω a chain {Σn}n∈ω of finitely satisfiable
sets of sentences as follows:

Σ0 = Σ

Σn+1 =

{
Σn ∪ {φn}, if this is finitely satisfiable
Σn ∪ {¬φn}, otherwise

The first lemma above establishes that in either case Σn+1 will be finitely satisfiable.
Finally, we let Γ =

⋃
n∈ω Σn. Γ is finitely satisfiable by the second lemma above.

If φ ∈ Sn then there is some n ∈ ω such that φ = φn. Thus either φ ∈ Σn+1 ⊆ Γ
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or (¬φ) ∈ Σn+1 ⊆ Γ by the construction. Thus we conclude that Γ is complete by
the last lemma above.

To return to the question with which we opened this section, how does the
Compactness Theorem help us decide whether or not Σ |= θ? Assume that we are
given some explicit listing of Σ = {σn| n ∈ ω}. Then Σ |= θ iff Σn = {σ0, . . . , σn} |=
θ for some n ∈ ω. Thus we check each n in turn to see if Σn |= θ. If in fact Σ |= θ
then we will eventually find an n ∈ ω such that Σn |= θ, and hence be able to
conclude that Σ |= θ. Unfortunately, if Σ 6|= θ this process never terminates and so
we are unable to conclude that Σ 6|= θ.

5. Formal Deductions

To complete the model of mathematical reasoning sketched in the Introduction
we need to introduce the concept of a formal deduction. This does not play an
important role in sentential logic because the method of truth tables enable us to
determine which sentences are valid, so we only sketch the development in this
section.

We will specify a set Λ0 of validities to serve as logical axioms and a rule for
deriving a sentence given certain others–both of these will be defined syntactically,
that is purely in terms of the forms of the sentences involed.

The rule, called modus ponens (MP), states that ψ can be derived from φ and
(φ→ ψ). Note that application of this rule preserves validity, and more generally,
if Γ |= φ and Γ |= (φ→ ψ) then Γ |= ψ.

To minimize the set Λ0 we restrict attention to sentences built using only the
connectives ¬,→. This entails no loss since every sentence of sentential logic is
logically equivalent to such a sentence.

Definition 5.1. The set Λ0 of axioms of sentential logic consists of all sentences
of the following forms:

(a) (φ→ (ψ → φ))
(b) (φ→ (ψ → χ))→ ((φ→ ψ)→ (φ→ χ))
(c) ((¬ψ → ¬φ)→ ((¬ψ → φ)→ ψ))

Definition 5.2. Let Γ ⊆ Sn. A deduction form Γ is a finite sequence φ0, . . . , φn
of sentences such that for each i ≤ n one of the following holds:

(i) φi ∈ Λ0 ∪ Γ
(ii) there are j, k < i such that φk = (φj → φi).

We say φ is deducible from Γ, written Γ ` φ, iff there is a deduction φ0, . . . , φn
from Γ with φ = φn.

The following is easily verified.

Lemma 5.1. (Soundness) If Γ ` φ then Γ |= φ.

To prove the completeness of the system we assume that Γ 6` φ and show that
Γ ∪ {¬φ} ⊆ Γ∗ for some complete set Γ∗, and thus Γ ∪ {¬φ} is satisfiable and so
Γ 6|= ¬φ.

To explain what is going on in this argument we introduce the syntactical
concept corresponding to satisfiability.

Definition 5.3. Let Σ ⊆ Sn. Σ is consistent iff there is no sentence φ such
that Σ ` φ and Σ ` ¬φ.
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Soundness easily implies that a satisfiable set Σ is consistent. The converse
is proved by showing that if Σ is consistent then Σ ⊆ Γ for some complete set Γ.
This is similar to the argument in the preceding section for compactness–the lemma
needed is as follows:

Lemma 5.2. Assume Σ is consisten and let θ be any sentence. Then at least
one of Σ ∪ {θ},Σ ∪ {¬θ} is consistent.

To see that this yields completeness, we need to show that Γ∪{¬φ} is consistent
provided Γ 6` φ. This uses the follwoing fact (the Deduction Theorem–also used in
the preceding lemma):

Proposition 5.3. For any Γ, φ, ψ the follwoing are equivalent:

Γ ` (φ→ ψ), Γ ∪ {φ} ` ψ.

We will look more closely at deductions in the context of predicate logic.

6. Exercises

Definition 6.1. A set Σ of sentences is independent iff there is no sentence
σ ∈ Σ such that (Σ r {σ}) |= σ.

Definition 6.2. Sets Σ1 and Σ2 of sentences are equivalent iff Σ1 |= Σ2 and
Σ2 |= Σ1.

(1) Let Σ = {(Sn ∨ Sn+1) : n ∈ ω}. Prove or disprove: Σ is independent.
(2) Let Σ = {(Sn+1 → Sn) : n ∈ ω}. Decide whether or not Σ is independent.
(3) Prove or disprove (with a counterexample) each of the following, where the

sentences belong to sentential logic:
(a) if ϕ |= θ and ψ |= θ then (ϕ ∨ ψ) |= θ;
(b) if (ϕ ∧ ψ) |= θ then ϕ |= θ or ψ |= θ.

(4) For any expression α let s(α) be the number of occurences of sentence symbols
in α and let c(α) be the number of occurences of binary connectives in α. Prove
that for every σ ∈ Sn we have s(σ) = c(σ) + 1

(5) Prove Lemma 1.2.3 about proper initial segments of sentences. [Hint: Why will
a proper initial segment of a sentence not be a sentence?]

(6) Decide, as efficiently as possible, whether or not

{((C → B)→ (A→ ¬D), ((B → C)→ (D → A))} |= (B → ¬D).

(7) Prove that every sentence σ in which no sentence symbol occurs more than
once is satisfiable, but that no such sentence is a tautology.

(8) Assume Σ is a finite set of sentences. Prove that there is some Σ′ ⊆ Σ such
that Σ′ is independent and Σ and Σ′ are equivalent.

(9) Let Σ be an arbitrary set of sentences. Prove that there is some Σ′ such that
Σ′ is independent and Σ and Σ′ are equivalent.

(10) Prove Lemma 1.5.3. [Since this is a lemma used to prove the Compactness
Theorem, Theorem 1.5.1, you may not use this theorem in the proof.]

(11) Assume that σ |= ϕk for all k ∈ ω. Prove that there is some n ∈ ω such that
ϕ0 ∧ · · · ∧ ϕn |= ϕk for all k ∈ ω.
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(12) Give an example of a satisfiable sentence σ and sentences ϕk for k ∈ ω such
that σ |= ϕk for all k ∈ ω but there is no n ∈ ω such that ϕ0 ∧ · · · ∧ ϕn |= ϕk
for all k ∈ ω.

(13) Assume that σ and ϕk are given so that for every assignment h we have

h |= σ iff (h |= ϕk for every k ∈ ω).

Prove that there is some n ∈ ω such that ϕ0 ∧ · · · ∧ ϕn |= ϕk for all k ∈ ω.





CHAPTER 2

First-Order Logic

0. Introduction

In mathematics we investigate the properties of mathematical structures. A
mathematical structure consists of some set A of objects (the domain, or universe,
of the structure) together with some functions and/or relations on the domain–
both must be specified to completely determine the structure. Thus the set Z of all
integers can be the domain of many different structures on Z in which the functions
+ and - are given; the ring structure in which also multiplication is considered; the
(pure) order structure in which the relation ≤ is given, but no functions; the ordered
group structure in which ≤,+, and − are included; etc.

In all these possible structures one considers not just the functions and relations
acutally listed, but also the functions and relations which are generated or defined
from them in certain ways. In practice, the allowable ways of generating more
functions and relations may be left vague, but in our formal systems we need
to be precise on this point. Certainly, in all cases we would be allowed to form
compositions of given functions obtaining, for example, polynomials like x·x−y+x·z
in the ring structure of Z. Normally constant functions would also be allowed, tus
obtaining all polynomials with integer coefficients in this example.

Similarly one can compose relations with functions obtaining, for example, re-
lations like (x + x) ≤ y · z in the ordered ring structure. Equality would also
normally be used regardless of whether it was explicitly listed. Connectives like
¬,∧, vee would enable us to form further relations. For example from binary rela-
tions R(x, y), S(x, y) on A we define relations ¬R(x, y), the relation which holds if
R fails; R(x, y) ∧ S(x, y), the relation which holds iff both R and S hold; etc.

In the ring structure on Z we would have, for example, the binary relation
R(x, y) which holds iff x = y · y. Thus R(1, 1), R(4, 2) would hold, R(2, 1) would
fail, etc. We would certainly also consider the new relation P (x) which holds iff
R(x, y) holds for some y in the domain–P (x) iff x = y · y for some y ∈ Z in this
example. And from ¬R(x, y) we can define Q(x) which holds iff ¬R(x, y) holds for
all y in the domain–Q(x) iff x¬y · y for all y ∈ Z in this example.

Finally the statements made about a structure would be statements concerning
the relations considered–for example, the statements that P (x) holds for some x
in the domain (true in this example) or that P (x) holds for every x in the domain
(flase in this example but true if the domain is enlarged from Z to the complex
numbers). Normally we would also be allowed to refer to specific elements of the
domain and make, for example, the statements that P (4) holds or Q(3) holds–both
true in this example.

Our formal systems of first order logic are designed to mirror this process.
Thus the symbols of a first order language will include symbols for functions, for

23
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relations, and for fixed elements (“constants”) of a domain. Among the expressions
we will pick out some which will define functions on a domain–and these functions
will include the listed functions and be closed under composition. Similarly other
expressions will define relations on a domain–and these relations will be closed
under the operations outlined above. Finally, the sentences of the language will
make assertions as indicated above about the definable relations.

Some important points to notice: first of all, there will be many different lan-
guages according to the selection of (symbols for) functions, relations, and con-
stants made. Secondly, a given language may be interpreted on any domain, with
any choice of functions, relations and elements consistent with the symbols–thus
we will never have a language which must be interpreted on the domain Z or with
a symbol which must be interpreted as +, for example.

1. Formulas of First Order Logic

We follow the outline in the previous section in defining the symbols of a first
order language, the terms (which correspond to the functions) and the formulas
(which correspond to the relations). In constructing formulas we use the symbols
∀ and ∃ for the quantifiers “for every” and “there is some” and we use ≡ for the
special relation of equality or identity which is in every first order language.

Definition 1.1. The symbols of a first order language Lcomprise the following:
1) for each m > 0 some set (perhaps empty) of m-ary function

symbols;
2) some set (perhaps empty) of individual constant symbols;
3) for each m > 0 some set (perhaps empty) of m-ary relation

symbols;
3a) the binary relation symbol for equality: ≡;
4) a (countably infinite) list of individual variables: v0, . . . , vn, . . .

for all n ∈ ω;
5) the sentential connectives: ¬,∧,∨,→;
6) the quantifiers: ∀,∃;
7) parentheses: (, ).

We will use (perhaps with sub- or superscripts) letters like F,G for function
symbols, c, d for constant symbols and R,S for relation symbols. Anticipating the
formal definition of L-structure in the next section, an interpretation of Lconsists
of a non-empty set A (the domain or universe of the interpretation) and for each
m-ary function symbol F an m-ary function F ∗ on A, for each constant symbol c
an element c∗ of A, and for each m-ary relation symbol R an m-ary relation R∗

on A–however ≡ is always interpreted as actual equality on A. The variables will
range over elements of A and quantification is over A.

The symbols listed in 3a)-7) are the same for all first order languages and will be
called the logical symbols of L. The symbols listed in 1)-3) will vary from language
to language and are called the non-logical symbols of L. We will write Lnlfor the
set of non-logical symbols of L. In specifying a language Lit suffices to specify Lnl.
Note that the smallest language will have Lnl= ∅. Note also that to determine
Lone cannot just specify the set Lnlbut must also specify what type of symbol each
is, such as a binary function symbol.

The terms of Lwill be those expressions of Lwhich will define functions in any
interpretation. These functions are built from the (interpretations of the) function
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symbols by composition. In addition we can use any constant symbol of Lin defining
these functions, and we consider a variable vn standing alone as defining the identity
function. We also allow the “limiting case” of a function of zero arguments as a
function. We thus have the following definition.

Definition 1.2. For any first order language Lthe set TmL of terms of Lis
defined as follows: (1) vn ∈ TmL for every n ∈ ω, c ∈ TmL for every constant
symbol of c of L, (2) if F is an m-ary function symbol of Land t1, . . . , tm ∈ TmL
then Ft1 . . . tm ∈ TmL.

This is, of course, a definition by recursion with the last clause “noting else
is a term” understood. The reader may be surprised that we have not written
F (t1, . . . , tm) but this is not required for unique readability (although it would
certainly help practical readability at times).

Just as with sentences of sentential logic we have a theorem justifying proof by
induction on terms, whose proof we leave to the reader.

Theorem 1.1. Let X ⊆ TmL and assume that (a) vn ∈ X for all n ∈ ω, c ∈ X
for every constant symbol c of L, and (b) whenever F is an m-ary function symbol
of Land t1, . . . , tm ∈ X then Ft1 . . . tm ∈ X. Then X = TmL.

Even without parentheses every term is uniquely readable, as we leave to the
reader to establish.

Theorem 1.2. For each t ∈ TmL with lh(t) > 1 there is exactly one choice
of m > 0, m-ary function symbol F of Land t1, . . . , tm ∈ TmL such that t =
Ft1, . . . , tm.

And finally, with unique readability we can define functions on TmL by recur-
sion. We leave the formulation and proof of this to the reader.

In defining the class of formulas of first order logic we start with the formulas
obtained by “composing” the given relation (symbols) with terms.

Definition 1.3. The atomic formulas of Lare the expressions of the form
Rt1 . . . tm for m-ary relation symbols R ∈ L and t1, . . . , tm ∈ TmL.

The atomic formulas are the basic building blocks for formulas, just as sentence
symbols were the building blocks for sentences in sentential logic.

Definition 1.4. For any first order language Lthe set FmL of formulas of Lis
defined as follows:

1) if φ is an atomic formula of L, then φ ∈ FmL,
2) if φ ∈ FmL then (¬φ) ∈ FmL,
3) if φ, ψ ∈ FmL then (φ ? ψ) ∈ FmL

for any binary connective ?,
4) if φ ∈ FmL then ∀vnφ, ∃vnφ ∈ FmL for every n ∈ ω

Note that atomic formulas do not have length 1; in fact in some languages there
will be arbitrarily long atomic formulas. Nevertheless induction on length yields
the following principle of proof by induction in which the atomic formulas are the
base case.

Theorem 1.3. Let X ⊆ FmL and assume that: (a) φ ∈ X for every atomic
formula φ of L, (b) φ ∈ X implies (¬φ) ∈ X, (c) φ, ψ ∈ X implies that (φ?ψ) ∈ X
for binary connectives ?, (d) φ ∈ X implies ∀vnφ, ∃vnφ ∈ X for every n ∈ ω. Then
X = FmL.
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As with terms, or sentences of sentential logic, both unique readability and a
principle of definition by recursion hold for FmL. We leave both the formulation
and proof of these to the reader.

We give here some examples of terms and formulas in particular first order
languages.

(1) Lnl= ∅. Here TmL = {vn| n ∈ ω}. Since ≡, being a logical symbol, belongs
to every first order language, the atomic formulas consist of the expressions ≡ vnvk
for n, k ∈ ω. Specific formulas then include (¬ ≡ v0v1), ∃v1(¬ ≡ v0v1), ((≡ v0v1∨ ≡
v0v2) ∨ (≡ v1v2)), ∀v0∃v1(¬ ≡ v0v1), ∀v0∀v1∀v2((≡ v0v1∨ ≡ v0v2) ∨ (≡ v1v2)).

An interpretation for this language will be determined by some A 6= ∅ as its
domain. We will always interpret ≡ as equality (“identity”) on the domain. It is
thus clear, for example, that the formula (¬ ≡ v0v1) will define the relation R∗(x, y)
on A such that R∗(a, a′) holds iff a 6= a′. Similarly the formula ∃v1(¬ ≡ v0v1) will
define the unary relation P ∗(x) on A such that P ∗(a) holds iff there is some a′ ∈ A
such that R∗(a, a′) holds, i.e. a 6= a′. Note that P ∗(a) will hold of no elements a
of A.

(2) Lnl= {R,F, c} where R is a binary relation symbol, F a unary function sym-
bol and c is a constant symbol. Now the terms of Lalso include c, Fvn, F c, FFvn, FFc,
etc. The atomic formulas consist of all expressions ≡ t1t2 and Rt1t2 for t1, t2 ∈
TmL–for example ≡ cFv1, Rv0Fv0, Rcv1. Further formulas will include (¬ ≡
cFv1), Rv0v1 → RFv0Fv1), ∃v1 ≡ v0Fv1, ∀v1Rcv1.

One familiar interpretation for this language will have domain A = ω, interpret
R as ≤, F as immediate successor, and c as 0. That is R∗(k, l) holds iff k ≤ l,
F ∗(k) = k + 1, c∗ = 0. The term FFvn will ben define the function (FFvn)∗

defined as (FFvn)∗(k) = F ∗(F ∗(k)) = k + 2 for all k ∈ ω. The term FFc will
define the particular element F ∗(F ∗(0)) = 2 of ω The formula ∃v1 ≡ v0Fv1 will
define the unary relation on ω which holds of k iff k = F ∗(l) for some l ∈ ω, that
is, iff k = l + 1 for some l ∈ ω, thus iff k 6= 0.

Giving a precise definition of how terms and formulas are interpreted in com-
plete generality is far from easy. One problem is that the relation defined, for
example, by the formula (φ ∨ ψ) is not just determined by the relations defined by
φ and by ψ separately, but also depends on the variables used in φ and in ψ and
on how they are related. Thus, we have pointed out that for any choice of distinct
variables vn, vk the formula (¬ ≡ vnvk) will define the binary relation R∗(x, y)
such that R∗(a, a′) holds iff a 6= a′. But the formula ((¬ ≡ vnvk) ∨ (¬ ≡ vmvl))
could define either a binary or ternary or 4-ary relation depending on the variables.
The situation is even more complicated in our second example with the formulas
(Rv0v1∨Rv1v2), (Rv0v1∨Rv2v1), (Rv0v2∨Rv1v2) etc. all defining different ternary
relations.

Our solution here is to realize that the interpretation of a term or formula de-
pends not only on the term or formula itself but is also dependant on the choice
of a particular list of variables in a specific order. Thus in addition to beig inter-
preted as the binary relation R∗ on A, the formulas Rv0v1 and Rv1v2 can each
be interpreted as ternary relations relative to the list v0, v1, v2 of variables. Rv0v1

would then be the relation S∗0 such that S∗0 (a, a′, a′′) holds iff R∗(a, a′) holds, and
Rv1v2 would then be the relation S∗1 such that S∗1 (a, a′, a′′) holds iff R∗(a′, a′′)
holds. We can then say that (Rv0v1 ∨Rv1v2) is interpreted by the ternary relation
S∗0 (x, y, z) ∨ S∗1 (x, y, z).
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What variables must occur in a list so that a term t or a formula φ will define
a function or relation relative to that list? Clearly for terms this would be just the
list of all variables occurring in the term. The answer for formulas is less obvious.
We have pointed out, for example, that the formula ∃v1 ≡ v0Fv1 defines a unary
relation on A, despite having two variables. The reason, of course, is that the
variable v1 is quantified and so the formula should express a property of v0 alone.
Unfortunately the same variable can be both quantified and not quantified in the
same formula, as shown (for example) by

(Rv1v0 → ∃v1 ≡ v0Fv1).

This formula must be interpreted by (at least) a binary relation, since the first
occurrence of v1 is not bound by any quantifier.

We are thus lead to the following definition of the variables which occur free in
a formula, and which must therefore be among the variables listed when considering
the relation. The formula defines in an interpretation.

Definition 1.5. For any φ ∈ FmL the set Fv(φ) of variables occurring free in
φ is defined as follows:

1) if φ is atomic then Fv(φ) is the set of all variables occuring in φ;
2) Fv(¬φ) = Fv(φ);
3) Fv(φ ? ψ) = Fv(φ) ∪ Fv(ψ);
4) Fv(∃vnφ) = Fv(∀vnφ) = Fv(φ)− {vn};

Thus in any interpretation a formula φ will define a relation in the list of its
free variables. If φ has no free variables then it will simply be either true or false
in any interpretation, which justifies the following definition.

Definition 1.6. The set SnL of sentences of Lis {φ ∈ FmL| Fv(φ) = ∅}.

We need to have a notation which will exhibit explicitly the list of variables
considered in interpreting a term or formula.

Definition 1.7. 1) For any t ∈ TmL we write t = t(x1, . . . , xn) provided
{x1, . . . , xn} contains all variables occurring in t. 2) For any φ ∈ FmL we write
φ = φ(x1, . . . , xn) provided Fv(φ) ⊆ {x1, . . . , xn}.

We emphasize that the term or formula in question does not determine the
list of variables nor the order in which they occur. Thus, if φ is ∃v1 ≡ v0Fv1

then we could have any of the following: φ = φ(v0), φ = φ(v0, v3), φ = φ(v3, v0),
φ = φ(v0, v1, v2), etc. The list of variables will determine the arity of the function
or relation defined in any interpretation, and the order in which the arguments are
taken from the variables.

Consider φ(v0) = ∃v1 ≡ v0Fv1. In any interpretation φ(v0) will define the set
(i.e. unary relation) consisting of all a ∈ A for which a = F ∗(a′) for some a′ ∈ A.
Let σ = ∃v1 ≡ cFv1. Then σ is a sentence and σ will be true in an interpretation
iff c∗ belongs to the set (φ(v0))∗ defined by φ(v0). It is natural to express this by
saying “c satisfies φ” and to write σ as φ(c). Our definition of substitution will
justify this usage.

Definition 1.8. a) Let t ∈ TmL, x a variable and s ∈ TmL. Then txs is the
term formed by replacing all occurrences of x in t by s. b) Let φ ∈ FmL, x a
variable and t ∈ TmL. Then φxt is the result of replacing all free occurrences of x
in φ by the term t–formally:
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1) φxt is φ with all occurrences of x replaced by t if φ is atomic;
2) (¬φ)xt = (¬(φxt ));
3) (φ ? ψ)xt = (φxt ? ψ

x
t ) for ? a binary connective;

4) (∃vnφ)xt = ∃vnφ if x = vn or ∃vn(φxt ) if x 6= vn;
5) Similarly for (∀vnφ)xt .

In particular, if t = t(x) we write t(s) for txs , and if φ = φ(x) we will write φ(t)
for φxt .

More generally we can define tx1,...,xn
t1,...,tn and φx1,...,xn

t1,...,tn as the results of simulta-
neously substituting t1, . . . , tn for all (free) occurrences of x1, . . . , xn in t, φ respec-
tively. Note that we may have

(φx1
t1 )x2

t2 6= φx1x2
t1t2 6= (φx2

t2 )x1
t1 .

If t = t(x1, . . . , xn) and φ = φ(x1, . . . , xn) then we will write t(t1, . . . , tn) for
tx1,...,xn
t1,...,tn and φ(t1, . . . , tn) for φx1,...,xn

t1,...,tn .

2. Structures for First Order Logic

First order languages are interpreted on (mathematical) structures, among
which we will find the usual structures studied in mathematics. The abstract defi-
nition, which is very close to the informal definition from the preceding section, is
as follows.

Definition 2.1. A structure for a first order language Lis a pair A = (A, I)
where A is some non-empty set (called the universe or domain of the structure) and
I is a function whose domain is Lnlsatisfying the following: (1) if F is an m-ary
function symbol of Lthen I(F ) = FA is an m-ary function defined on all of A and
having values in A, (2) if c is a constant symbol of Lthen I(c) = cA ∈ A, (3) if R
is an m-ary relation symbol of Lthen I(R) = RA is an m-ary relation on A.

Note that ≡ is not in the domain of I since it is a logical symbol, so it does
not make sense to refer to I(≡) or ≡A. We also point out that the functions
interpreting the function symbols are total–thus a binary function symbol cannot
be interpreted, for example, as unary on ω.

We customarily use German script letters A,B, . . . to refer to structures, per-
haps with sub- or superscripts. By convention the universe of a structure is denoted
by the corresponding capital Latin letter, with the same sub- or superscript.

In practice we suppress reference to I and just give its values. Thus if Lnl=
{R,F, c} where R is a binary relation symbol, F is a unary function symbol, and c is
a constant symbol, we might specify a structure for Las follows: A is the structure
whose universe is ω such that RA(k, l) holds iff k ≤ l, FA(k) = k + 1 for all k
and cA = 0. When the specific symbols involved are clear, we may just write the
sequence of values of I in place of I. Thus the preceding example could be written
as A = (ω,≤, s, 0) where s : ω → ω is the (immediate) successor function.

A structure is a structure for exactly one language L. If L1 and L2 are different
languages then no L1-structure can also be an L2-structure. Thus if Lnl1 = {R,F, c}
as above and Lnl2 = {S,G, d} where S is a binary relation symbol, G is a unary
function symbol and d is a constant symbol, then one L1-structure is A given above.
An L2-structure could be B with universe ω, with S interpreted as ≤, G as the
successor function and dB = 0. Informally we could express B as B = (ω,≤, s, 0)–
but A and B are totally different structures since the symbols interpreted by ≤, s,



2. STRUCTURES FOR FIRST ORDER LOGIC 29

and 0 are different. If L3 = L1 ∪ L2, so Lnl3 = Lnl1 ∪ Lnl2 , then one L3-structure
would be A∗ with universe ω, both R and S interpreted as ≤, both F and G as s
and cA

∗
= dA

∗
= 0. It would be possible, but confusing, to write

A∗ = (ω,≤, s, 0,≤, s, 0).

There is, however, one very important relation between structures in different
languages, in which one structure is a reduct of the other to a smaller language. In
this case the structures are equivalent as far as the smaller language is concerned
and can be used interchangeably.

Definition 2.2. Let L1 and L2 be first order languages with L1 ⊆ L2 (equiv-
alently Lnl1 ⊆ Lnl2 ). Let A be an L1-structure, B an L2-structure. Then A is the
reduct of B to L1, and B is an expansion of A to L2, iff A and B have the same uni-
verse and they interpret all symbols in Lnl1 precisely the same. We write A = B�L1

if A is the reduct of A to L1.

Thus in the above examples of L1-, L2- and L3-structures, A = A∗ � L1 and
B = A∗ �L2. Note that in spite of the terminology “expansion” that the universe
of a structure remains fixed when passing to an expansion–only the language is
expanded.

One of the most important special cases of an expansion of a structure occurs
when we add (new) constant symbols so as to name some elements of the structure.

Definition 2.3. Let Lbe a first order language, let A be an L-structure and
let X ⊆ A.

(a) L(X) = L ∪ {ca| a ∈ X} is the language obtained from Lby adding a new
constant symbol ca for each a ∈ X.

(b) AX is the expansion of A to an L(X)-structure such that

cAXa = a for all a ∈ X.

In particular, AA is the expansion of A obtained by adding constants for every
element of A. In ordinary mathematical practice the structures A and A would
not be distinguished–in talking about A you would naturally want to talk about
arbitrary elements of A, which means having constants for them in your language
when you formalize.

We will also take the point of view that in talking about A you will frequently
wish to refer to specific elements of A, but we will always carefully distinguish AA
from A.

We also emphasize that there is no way that we could–or would want to if we
could–ensure at the outset that Lcontained constants to name every element of
every L-structure. Since there are L-structures A with |A| > |L| the first point
is clear. For the second, recall the language Labove with Lnl= {R,F, c} and the
L-structure A = {ω,≤, s, 0}. Another L-structure one would naturally wish to
consider would be B = (Z,≤, s, 0). But if Lhad constants to refer to every element
of Z then those constants naming negative integers could not be interpreted in A,
i.e. as elements of ω, in any natural way.

To recapitulate, a language Ldetermines the class of L-structures, whose uni-
verses are arbitary (in particular arbitrarily large) non-empty sets. In studying
any particular L-structure A, we will customarily pass to the language L(A) and
the expansion AA). but in comparing two different L-structures A,B we must
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use properties expressible in Lsince L(A) will not normally have any “natural”
interpretation on B nor will L(b) normally have any “natural” interpretation on A.

We now proceed to give a very intuitively natural definition of the truth of
a sentence of Lon AA. Since every sentence of Lis also a sentence of L(A) this
definition will, in particular, determine when a sentence of Lis true on AA. And
since A and AA are identical as far as Lis concerned, we will take this as the
definition of the truth of a sentence of Lon the given L-structure A.

An atomic formula Rt1 . . . tm (or ≡ t1t2) is a sentence iff the terms t1, . . . , tm
contain no variables. We will want to say that Rt1 . . . tm is true on AA iff the
relation RA (equivalently RAA) holds of the elements of A which are named by
the terms t1, . . . , tm. If Lhas function symbols we need to first give a definition
by recursion stating how terms without variables (also called closed terms) are
evaluated.

Definition 2.4. Given an L-structure A we define the interpretation tAA of
closed terms t of L(A) in AA as follows:

(1) if t is a constant symbol c of L(A) then tAA = cAA ;
(2) if t = Ft1 . . . tm for closed terms t1, . . . , tm of L(A) then

tAA = FA(tAA1 , . . . , tAAm ).

Definition 2.5. Given an L-structure A we define the truth value θAA of
sentences θ of L(A) in AA so that θAA ∈ {T, F} as follows:

1) if θ is Rt1 . . . tm for closed terms t1, . . . , tm and R ∈ Lnlthen

θAA = T iff RA(tAA1 , . . . , tAAm ) holds;

2) if θ is ≡ t1t2 for closed terms t1, t2 then θAA = T iff tAA1 = tAA2 ;
3) if θ = ¬φ then θAA = T iff φAA = F ;
4) if θ = (φ ∧ ψ) then θAA = T iff φAA = ψAA = T ;
5) if θ = (φ ∨ ψ) then θAA = F iff φAA = ψAA = F ;
6) if θ = (φ→ ψ) then θAA = F iff φAA = T and ψAA = F ;
7) if θ = ∀vnφ then φ = φ(vn) and θAA = T iff φ(ca)AA = T for all

a ∈ A;
8) if θ = ∃vnφ then φ = φ(vn) and θAA = T iff φ(ca)AA = T for some

a ∈ A;

Notation 1. Let A be an L-structure. (a) If θ ∈ SnL(A) then AA |= θ, read θ

is true on AA or AA satisfies θ, iff θAA = T . (b) If θ ∈ SnL then A |= θ, read θ is
true on AA or AA satisfies θ or A is a model of θ, iff AA |= θ.

The above definition is designed to capture the “common sense” idea that, say
∃xφ(x) is true on a structure iff φ holds of some element of the structure. We pass
to the expanded language precisely so as to be able to express this “common sense”
definition using sentences of a formal language.

We extend our notations tAA , θAA to arbitrary terms and formulas of L(A) as
follows.

Definition 2.6. Let t(x1, . . . , xn) ∈ TmL(A). Then tAA is the function on A

defined as follows: for any a1, . . . , an ∈ A, tAA(a1, . . . , an) = t(ca1 , . . . , can)AA . If t
is actually a term of Lwe write tA for the function tAA .

Definition 2.7. Let φ(x1, . . . , xn) ∈ FmL(A). Then φAA is the n-ary relation

of A defined as follows: for any a1, . . . , an ∈ A, φAA(a1, . . . , an) holds iff AA |=
φ(ca1 , . . . , can). If φ is actually a formula of Lwe write φA for the relation φAA .
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Just as in the informal discussion in the preceding section, the definitions of
the functions tAA and relations φAA are relative to the list of variables used, but
this ambiguity causes no problems.

Definition 2.8. Given an L-structure A, an L(A)-formula φ(x1, . . . , xn) and
elements a1, . . . , an ∈ A we say that φ is satisfied by a1, . . . , an in AA iff AA |=
φ(ca1 , . . . , can). If φ is in fact a formula of Lwe will say it is satisfied by a1, . . . , an
in A instead of AA. In each case we will say φ is satisfiable in AA or A to mean it
is satisfied by some a1, . . . , an.

Note that if θ is a sentence of L(A) then either θ is satisfied by AA or (¬θ) is
satisfied by AA, but not both.

In extreme cases it may make sense to talk of a formula (with free variables)
being true on a stucture.

Definition 2.9. Given an L-structure A and a formula φ = φ(x1, . . . , xn) of
L(A) we say φ is true on AA, written AA |= φ, iff AA |= φ(ca1 , . . . , can) for all
a1, . . . , an ∈ A. If φ is a formula of Lwe say φ is true on A and write A |= φ.

We thus see that the following are equivalent: A |= φ, ¬φ is not satisfiable in A,
A |= ∀x1 · · · ∀xnφ. At most one of A |= φ, A |= ¬φ will hold but in general neither
of them will hold.

We proceed to a series of examples, using the language Lwhose non-logical
symbols are precisely a binary relation symbol R and a unary function symbol F .

A |=≡ xx for all A, since ≡ is interpreted by actual equality in every L-
structure. Hence also A |= ∀x ≡ xx for all A.

If x, y are different variables then ≡ xy is satisfiable in every A, since AA |=≡
caca for all a ∈ A; hence A |= ∃x∃y ≡ xy for all A. Hwever ≡ xy is true on A
iff A contains at most (and so exactly) one element; thus also A |= ∀x∀y ≡ xy iff
|A| = 1.

Similarly ¬ ≡ xy (for different variables, x, y) is satisfiable on A iff A |=
∃x∃y¬ ≡ xy iff |A| ≥ 2. Analogously for x1, x2, x3 all different variables the formula

¬ ≡ x1x2 ∧ ¬ ≡ x1x3 ∧ ¬ ≡ x2x3

is satisfiable in A iff |A| ≥ 3.
More gernerally, for each positive integer n we obtain a formula φn(x1, . . . , xn)

without quantifiers (hence called a quantifier-free formula) which is satisfiable in
A iff |A| ≥ n. If we define θn to be the sentence ∃x1 · · · ∃xnφn then A |= θn iff
|A| ≥ n. We then have A |= (θn ∧ ¬θn+1) iff |A| = n. Given integers k, l, n with
k ≥ 2, k < l < n we could also, for example, write down a sentence σ such that
A |= σ iff either |A| < k or |A| = l or |A| > n. Note that these formulas and
sentences use no non-logical symbols and thus will belong to every language.

We now consider two particular L-structures: A = (ω,≤, s) and B = (Z,≤, s).
If φ0(x) is ∃yRxy then φA0 = ω, φB) = Z, hence both structures are models of

the sentence ∀x∃yRxy.
If φ1(x) is ∀yRxy then φA1 = {0} and φB1 = ∅, hence A |= ∃x∀yRxy by

B |= ¬∃x∀yRxy.
If φ2(x) is ∃y ≡ xFy then φA2 = ω − {0} but φB2 = Z. Thus B |= ∀x∃y ≡ xFy

but A |= ¬∀x∃y ≡ xFy, that A |= ∃x∀y¬ ≡ xFy.
We noted above that φ1(x) is such that φA1 = {0}. If we now define φ3(y) to

be ∃x(φ1(x)∧ ≡ yFx) then φA3 = {1}. In the same way we can find, for every
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k ∈ ω, a formula ψk(y) such that ψA
k = {k}. Are there formulas χk for k ∈ Z such

that χB
k = {k}? Note that it would suffice to show that there is a formula χ0 with

χB
0 = {0}.

We conclude this section with three important facts about the truth or satisfi-
ability of substitutions.

First, suppose Lis a language containing (among other things) an individual
constant symbol d. Let A be an L-structure and let a0 = dA. Then in L(A) we
will have also the constant symbol ca0 and in AA both d and ca0 will be interpreted
as the element a0. If φ(x) is a formula of L(A) then, by definition, we will have
AA |= ∀xφ(x) iff AA |= φ(ca) for all a ∈ A. A priori we could have AA |= ∀xφ(x)
even though AA |= ¬φ(d), although this would clearly be undesirable. Luckily we
can prove that this counter-intuitive state of affairs never occurs.

Theorem 2.1. Let A be an L-structure, let t be a closed term of L(A), let
a0 = tAa , and let φ(x) be any formula of L(A). Then

AA |= φ(t) iff AA |= φ(ca0).

In particular
AA |= ∀xφ(x)→ φ(t).

Our second fact attempts to generalize the first to the case in which the term
need not be closed. That is, if A is an L-structure, φ(x) is and L(A)-formula and
t is a term of Lwhat can we say about the relation between φ(x) and φ(t)? In
particular will we still have AA |= (∀xφ(x) → φ(t))? [Note that this will normall
not be a sentence, due to the variables in t.]

As the simplest possibility, consider the case in which t is just another variable
y. The desired result, then, is that φ = φ(x) and φ(y) = φxy both define the same
subset of A in AA–that is, for every a ∈ A we have AA |= φxca iff AA |= (φxy)yca .

In this even we will certainly have AA |= ∀xφ(x)→ φ(y). Unfortunately there
are certainly problems depending on how y occurs in φ. For example, let φ(x) be
∃y¬ ≡ xy. Then φ(y) is the sentence ∃y¬ ≡ yy, which is always false, and hence
whenever |A| ≥ 2 we will have A 6|= ∀xφ(x) → φ(y). What went wrong here is
that, in passing from φ to φxy some of the near occurrences of y became bound–if
this did not happen there would be no problem. The formal definition of “no new
occurrences of y become bound” is given in the following definition.

Definition 2.10. For any Land any variables x, y we define the property “y
is substitutable for x in φ” for φ ∈ FmL as follows:

(1) if φ is atomic then y is substitutible for x in φ,
(2) if φ = (¬ψ) then y is substitutible for x in φ iff y is substitutible for x in ψ,
(3) if φ = (ψ ? χ) where ? is a binary connective, then y is substitutable for x

in φ iff y is substitutible for x in both ψ and χ,
(4) if φ = ∀vnψ or φ = ∃vnψ then y is substitutible for x in φ iff either

x /∈ Fv(φ) or y 6= vn and y is substitutible for x in ψ.

Note in particular that x is substitutible for x in any φ, and that y is substi-
tutible for x in any φ in which y does not occur.

The following result states that this definition does weed out all problem cases.

Theorem 2.2. Let A be an L-structure. (1) Let φ(x) ∈ FmL(A) and assume y

is substitutible for x in φ. Then φAA = (φxy)AA . (2) Let φ ∈ FmL(A) and assume
y is substitutible for x in φ. Then AA |= (∀xφ→ φxy).
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In an entirely analogous fashion we can define, for arbitrary terms t of L, the
property t is substitutible for x in φ to mean (informally) no new occurrences in φxt
of any variable y occurring in t become bound. We leave the precise formulation of
this to the reader. The resulting theorem is exactly what we were after.

Theorem 2.3. Let A be an L-structure, φ ∈ FmL(A), t ∈ TmL(A). Assume t
is substitutible for x in φ. Then AA |= (∀xφ→ φxt ).

We remark, finally, that we can extend our notion of substituition of a term for
a variable x to a notioin of substitution of a term for a constant c. We leave to the
reader the task of defining φct , and φc1...cnt1...tn . The main properties we will require are
summarized in the following theorem.

Theorem 2.4. Let φ ∈ FmL and let y be a variable not occurring in φ. Then
(1) c does not occur in φcy, (2) (φcy)yc = φ.

3. Logical Consequence and Validity

The definitions of logically true formulas, and of logical consequences of sets of
sentences, now are exacgly as expected. Some care, however, is needed in defining
logical consequences of sets of formulas.

Definition 3.1. Let φ be a formula of L. (1) φ is logically true or valid,
written |= φ, iff A |= φ for every L-structure A. (2) φ is satisfiable iff φ is satisfiable
on some L-structure A.

The basic connection between satisfiability and validity is just as in sentential
logic. In addition the validity and satisfiability of formulas can be reduced to that
of sentences.

Lemma 3.1. Let φ = φ(x1, . . . , xn) ∈ FmL.
(1) |= φ iff ¬φ is not satisfiable
(2) |= φ iff |= ∀x1 · · · ∀xnφ
(3) φ is satisfiable iff ∃x1 · · · ∃xnφ is satisfiable

Since there are infinitely many different L-structures for any language Lone has
no hope of checking them all to determine, for example, if some given formula is
valid. Nevertheless, one can frequently figure this out, as a few examples will make
clear.

Example 3.1. Let Lbe a language with unary relation symbols P and Q.
Determine whether or not σ is valid where

σ = ∀x(Px→ Qx)→ (∀xPx→ ∀xQx).

Suppose A 6|= σ, hence A |= ¬σ since σ is a sentence. Then A |= ∀x(Px → Qx),
A |= ∀xPx but A 6|= ∀xQx. The last assertion means that AA |= ¬Qca0 for some
a0 ∈ A. But the other two assertions imply that AA |= Pca0 and AA |= (Pca0 →
Qca0), which contradict AA |= ¬Qca0 . Thus we conclude σ is valid.

Example 3.2. Determine whether or not θ is valid where

θ = (∀xPx→ ∀xQx)→ ∀x(Px→ Qx).

Suppose A 6|= θ, hence A |= ¬θ.Then A |= (∀xPx→ ∀xQx) but A 6|= ∀x(Px→ Qx).
The last assertion means that AA |= Pca0 and AA |= ¬Qca0 for some a0 ∈ A.
The first assertion breaks into two cases. In case 1, A 6|= ∀xPx and in case 2,
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A |= ∀xQx. Case 2 is contradicted by the other information, but case 1 will hold
provided AA |= ¬Pca1 for some a1 ∈ A. We thus conclude that θ is not valid since
we will have A |= ¬θ whenever there are elements a0, a1,∈ A such that a0 ∈ PA,
a0 /∈ QA, a1 /∈ PA. For example, we can define A by specifying that A = {0, 1},
PA = {a0}, QA = ∅.

We can generalize the result established in Example 2.4.1 as follows.

Example 3.3. For any formulas φ, ψ of any L,

|= ∀x(φ→ ψ)→ (∀xφ→ ∀xψ).

Choose variables y1, . . . , yn such that φ = φ(x, y1, . . . , yn) and ψ = ψ(x, y1, . . . , yn).
Suppose A is an L-structure such that A 6|= ∀x(φ → ψ) → (∀xφ → ∀xψ). Note
that we cannot conclude that A |= ∀x(φ→ ψ) etc. since ∀x(φ→ ψ) is presumably
not a sentence. We can, however, conclude that there are a1, . . . , an ∈ A such that
AA 6|= θ(ca1 , . . . , can) [where θ = θ(y1, . . . , yn) = (∀x(φ → ψ) → (∀xφ → ∀xψ))]
hence–since this is now a sentence–

AA |= ∀x(φ(x, ca1 , . . . , can)→ ψ(x, ca1 , . . . , can)).

The rest of the argument proceeds as before.

Preparatory to defining logical consequence we extend some notations and ter-
minology to sets of formulas and sentences.

Definition 3.2. If Γ ⊆ FmL then we will write Γ = Γ(x1, . . . , xn) provided
Fv(φ) ⊆ {x1, . . . , xn} for all φ ∈ Γ.

Definition 3.3. If Σ ⊆ SnL and A is an L-structure then we say A is a model
of Σ, written A |= Σ, iff A |= σ for every σ ∈ Σ.

Definition 3.4. (1) If Γ ⊆ FmL, Γ = Γ(x1, . . . , xn) , and a1, . . . , an are
elements of an L-structure A, then Γ is satisfied on A by a1, . . . , an, written AA |=
Γ(ca1 , . . . , can), iff every formula in Γ is satisfied on A by a1, . . . , an. (2) If Γ =
Γ(x1, . . . , xn) ⊆ FmL and A is an L-structure then we say Γ is satisfiable in A iff Γ
is satisfied on A by some a1, . . . , an.

Note that if Γ is satisfiable in A then every φ ∈ Γ is satisfiable in A but
the converse may fail. A trivial example is given by Γ = {≡ xy,¬ ≡ xy} with
A any structure with at least two elements. A non-trivial example is given by
Γ = {φn(x)| 1 ≤ n ∈ ω} where φ1(x) = ∃yRFyx, φ2(x) = ∃yRFFyx, etc. in
the language Lwhose none-logical symbols are a binary relation symbol R and
a unary function symbol F . Consider the two L-structures A = (ω,≤, s) and
B = (Z,≤, s). Then φBn = Z for every n ∈ ω−{0}, hence Γ is satisfiable in B. But
φAn = {k ∈ ω| n ≤ k} for each n ∈ ω − {0}. Thus Γ is not satisfiable in A although
every formula in Γ–indeed every finite Γ0 ⊆ Γ–is satisfiable in A.

Definition 3.5. (1) A set Σ of sentences is satisfiable iff it has a model. (2) A
set Γ = Γ(x1, . . . , xn) of formulas is satisfiable iff Γ is satisfiable in some structure
A.

Note that we have only defined satisfiability for sets Γ of formulas with only
finitely many free variables total while we could extend these notions to arbitray
sets of formulas, we will have no need for these extensions.

We finally can define logical consequence.
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Definition 3.6. (1) Let Σ ⊆ SnL, φ ∈ FmL. The φ is a logical consequence of
Σ written Σ |= φ, iff A |= φ for every L-structure A which is a model of Σ. (2) Let
Γ ⊆ FmL, φ ∈ FmL and suppose that Γ = Γ(x1, . . . , xn), φ = φ(x1, . . . , xn). Then
φ is a logical consequence of Γ written Γ |= φ, iff AA |= φ(ca1 , . . . , can) for every
L-structure A and every a!, . . . , an ∈ A such that AA |= Γ(ca1 , . . . , can).

Part (1) of the definition is as expected. We comment on part (2) and give
some examples. First of all, the only restriction on Γ is that its formulas contain
only finitely many free variables total–since then one can certainly find a single list
x1, . . . , xn of variables which includes all variables occurring free either in φ or in
formulas in Γ. The definition is also independent of the precise list used.

Next, the definition in part (1) is a special case of the definition in part (2).
Thus if Σ ⊆ SnL and φ(x1, . . . , xn) ∈ FmL then also Σ = Σ(x1, . . . , xn). Now if
A |= Σ then in particular A |= Σ(ca1 , . . . , can) for all a1, . . . , an ∈ A. Thus the
definition in part (2) yields AA |= φ(ca1 , . . . , can) for all a1, . . . , an ∈ A, and thus
A |= φ as required for the definition in part (1). On the otherhand if A is not a
model of Σ then neither definition yields any conclusion about the satisfiability of
φ in A.

The definition is formulated to make the following result hold.

Lemma 3.2. For any Γ = Γ(x1, . . . , xn), φ(x1, . . . , xn), ψ(x1, . . . , xn) we have

Γ ∪ {φ} |= ψ iff Γ |= (φ→ ψ).

Proof. Γ |= (φ→ ψ) iff there are A and a1, . . . , an such that AA |= Γ(ca1 , . . . , can)
but AA 6|= (φ(ca1 , . . . , can)→ ψ(ca1 , . . . , can)), that is, a1, . . . , an satisfy Γ ∪ {φ} in
A but do not satisfy ψ, thus iff A and a1, . . . , an also show that Γ ∪ {φ} 6|= ψ. �

Thus we see, for example, that {Rxy} 6|= ∀yRxy since (Rxy → ∀yRxy) is not
valid. On the other hand {Rxy} |= ∃yRxy since (Rxy → ∃yRxy) is valid.

In the remainder of this section we identify some classes of validities and we es-
tablish some further properties of the logical consequence relation. These validities
and properties will then be used in the next section to establish a method which
enables one to “mechanically” generate all the logical consequences of a given set
Γ.

To begin, tautologies of sentential logic can be used to provide a large class of
validities of first order logic. For example (S0 → (S1 → S0)) = θ is a tautology. Of
course it isn’t even a formula of any first order language L. But if φ0, φ1 ∈ FmL
then the result of replacing S0 by φ0 and S1 by φ1 throughout θ is the formula
θ∗ = (φ0 → (φ1 → φ0)) of L, and |= θ∗ for the same reasons that θ is a tautology,
as the reader should check. The same thing occurs regardless of what tautology
one starts with; thus suggesting the following definition.

Definition 3.7. A formula ψ of Lis a tautology iff there is some tautology θ
of sentential logic and some substitution of L-formulas for the sentence symbols in
Lwhich yields the formula ψ.

Despite the “existential” nature of this definition one can in fact check any
given formula ψ of Lin a finite number of steps to decide if it is a tautology. The
point is that there will only be finitely many sentences θ of sentential logic (except
for the use of different sentence symbols) such that ψ can be obtained from θ by
some such substitution, and each such θ can be checked to determine whether it is
a tautology.
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For example let σ be the sentence

(∀v0(Pv0 → Qv0)→ (∀v0Pv0 → ∀v0Qv0)).

Then σ can be obtained only from the following sentences θi of sentential logic:

θ0 = A

θ1 = (A→ B)

θ2 = (A→ (B → C)).

Since none of these is a tautology (for distinct sentence symbols A,B,C), σ is
not a tautology either, although |= σ.

We leave the proof of the following result to the reader.

Theorem 3.3. If ψ ∈ FmL is a tautology, then |= ψ.

The following list of facts is left to the reader to establish.

Theorem 3.4. (1) |= (∀xφ→ φxt ) whenever t is substitutible for x in φ;
(2) |= (φ→ ∀xφ) if x /∈ Fv(φ);
(3) |= (∀xφ→ ∀yφxy) and |= (∀yφxy → ∀xφ) if y does not occur in φ;
(4) if Γ |= φ then γ |= ∀xφ provided x does not occur free in any formula in Γ;
(5) if φ ∈ Γ then Γ |= φ;
(6) if Γ |= φ and Γ ⊆ Γ′ then Γ′ |= φ;
(7) if Γ |= φ and Γ |= (φ→ ψ) then Γ |= ψ;
(8) |=≡ xx;
(9) |=≡ xy → (φzx → φzy) provided both x and y are substitutible for z in φ.

Logical equivalence is defined as in sentential logic.

Definition 3.8. Formulas φ, ψ of Lare logically equivalent, written φ `a ψ,
iff {φ} |= ψ and {ψ} |= φ.

Note, for example, that for any φ,

∃xφ `a ¬∀x¬φ.
Together with equivalence from sentential logic this enables us to concludeL

Theorem 3.5. For any φ(x1, . . . , xn) ∈ FmL there is some φ∗(x1, . . . , xn) ∈
FmL such that φ `a φ∗ and φ∗ is built using only the connectives ¬,→ and only
the quantifier ∀.

For example, if φ is
∀x∃y(Rxy ∨Ryx)

then φ∗ would be
∀x¬∀y¬(¬Rxy → Ryx).

We have been a little lax in one matter–technically, all our definitions are
relative to a language L. But of course a formula φ belongs to more than one
language. That is: if L, L′ are first order languages and L ⊆ L′, then FmL ⊆ FmL′ .
So we really have two different notions of validity here for L-formulas φ:
|=L φ meaning A |= φ for all L-structures A,
|=L′ φ meaning A |= φ for all L′-structures A′.
Happily these coincide due to the following easily established fact.

Lemma 3.6. Assume L ⊆ L′, A′ is an L-structure, A = A�L. Let φ(x1, . . . , xn)
be a formula of L, a1, . . . , an ∈ A. Then A′A |= φ(ca1 , . . . , can) iff AA |= φ(ca1 , . . . , can).
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4. Formal Deductions

The definition of validity given in the preceding section does not yield a method
of deciding, in a finite number of steps, whether or not a given formula is valid. In
this section, we describe a procedure for generating the validities. A set of formulas
each known to be valid is picked out and called the set of logical axioms. A rule is
stated which enables us to generate more formulas in a step-by-step fashion. A finite
sequence of formulas showing exactly how a given formula is obtained by repeated
applications of the rule beginning with the logical axioms is called a deduction of
the given formula. Since the rule preserves logical validity all formulas which have
deductions are valid. In the next chapter we will prove the converse, that all valid
formulas have deductions.

This whole process is syntactical and capable of being automated. That is,
whether or not a formula is a logical axiom can be determined, in a finite number
of steps, by looking at the form of the formula, and whether or not the rule applies
to yield a given formula from some other formulas is also determined just by looking
at the form of the formulas in question. Thus looking at a given finite sequence
of formulas one can determine, in a finite procedure, whether or not this sequence
is a deduction. It follows that (for languages with just countably many formulas)
one could program a computer to generate a listing of all deductions and thus of
all formulas which have deductions. This does not, however, mean that we have
a procedure which will decide, in a finite number of steps, whether or not a given
formula has a deduction. So even with the theorem from the next chapter we will
not have a procedure which determines, in a finite number of steps, whether or not
a given formula is valid.

All of this generalizes to deductions from arbitrary sets Γ of formulas, and
the theorem from the next chapter will state that φ is deducible from Γ iff φ is a
logical consequence of Γ. This result will then become our main tool for studying
properties of “logical consequence.”

In particular, our goal in this section is not so much to develop techniques of
showing that a specific φ is deducible from a specific Γ, but to develop properties
of the relation of deducibility which will be of theoretical use to us later.

Before defining the logical axioms on piece of terminology is useful.

Definition 4.1. By a generalization of a formula φ is meant any formula of
the form ∀x1, . . . ,∀xnφ, including φ itself.

Note that φ is valid iff every generalization of φ is valid.
We will simplify our deductive system by having it apply only to formulas built

up using just the connectives ¬,→ and the quantifier ∀. This is not a real restriction
since every formula is logically equivalent to such a formula. We will continue to
write formulas using ∧,∨,∃ but these symbols will have to be treated as defined in
terms of ¬,→,∀ in the context of deducibility.

Definition 4.2. For any first order language Lthe set Λ of logical axioms of
Lconsists of all generalizations of formulas of Lof the following forms:
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1) tautologies,
2) (∀xφ→ φxt ) where t is substitutible for x in φ,
3) (∀x(φ→ ψ)→ (∀xφ→ ∀xψ)),
4) (φ→ ∀xφ) where x /∈ Fv(φ),
5) ≡ xx,
6) (≡ xy → (φzx → φzy)) for atomic formulas φ.

We could restrict the tautologies allowed to just those of certain specified forms
(see Chapter One Section Six). This would be preferable to certain purposes, but
would require more effort in this section.

Lemma 4.1. Let φ ∈ FmL. 1) If φ ∈ Λ then ∀xφ ∈ Λ for every variable x. 2)
If φ ∈ Λ then |= φ.

Our only rule of inference is known by the Latin name “modus ponens” which
we will abbreviate to MP. As used in a deduction it allows one to put down a
formula ψ provided formulas φ and (φ→ ψ) precede it.

Definition 4.3. Let Γ ⊆ FmL.
(a) A deduction from Γ is a finite sequence φ0, . . . , φn of formulas of Lsuch that

for every i ≤ n we have either
(1) φi ∈ Λ ∪ Γ, or
(2) there are j, k < i such that φk = (φj → φi).

(b) The formula φ is deducible from Γ, written Γ ` φ, iff there is a deduction
φ0, . . . , φn from Γ with φn = φ.

(c) In particular a logical deduction is just a deduction from Γ = ∅, and φ is
logically deducible, ` φ, iff ∅ ` φ.

Proposition 4.2. (Soundness) If Γ ` φ then Γ |= φ. In particular if φ is
logically deducible then φ is valid.

Proof. Let φ0, . . . , φn be a deduction of φ from Γ. We show, by induction on
i, that Γ |= φi for every i ≤ n. Since φn = φ this suffices to show Γ |= φ. Let i ≤ n
and suppose, as inductive hypothesis, that Γ |= φj for all j < i. If φi ∈ (Λ ∪ Γ)
then Γ |= φi. In the other case there are j, k < i such that φk = (φj → φi). By the
inductive hypothesis Γ |= φj and Γ |= (φj → φi), and so Γ |= φi. �

Lemma 4.3. Let Γ ⊆ FmL.
(1) If φ ∈ (Λ ∪ Γ) then Γ ` φ.
(2) If Γ ` φ and Γ ` (φ→ ψ) then Γ ` ψ.

Proof. (of part 2) Let φ0, . . . , φn be a deduction of φ from Γ and let ψ0, . . . , ψm
be a deduction of (φ→ ψ) from Γ. Then the sequence φ0, . . . , φn, ψ0, . . . , ψm, ψ is
a deduction of ψ from Γ. �

Clearly any formula in (Λ ∪ Γ) is deducible from Γ with a deduction of length
one. The shortest possible deduction involving a use of MP will have length three.
Here is an example:

(∀x¬φ→ ¬φ),

(∀x¬φ→ ¬φ)→ (φ→ ¬∀x¬φ),

(φ→ ¬∀x¬φ).

The first formula is a logical axiom since x is substitutible for x in any φ, and
φxx = φ. The second formula is a tautology, and the third follows by MP.
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This example shows that ` (φ → ¬∀x¬φ) for every φ ∈ FmL. Recalling our
use of defined symbols, it may be more intelligibly expressed as ` (φ→ ∃xφ). The
reader should try to establish that ` ∀x(φ→ ∃xφ).

Due to our restricting the connectives and quantifiers allowed in formulas, every
non-atomic formula has either the form ¬φ or (φ→ ψ) or ∀xφ. We proceed to give
several results which characterize the conditions under which such formulas are
deducible from Γ. These results can then be used to show deducibility of formulas.

Lemma 4.4. Deduction Theorem For any Γ ⊆ FmL, φ, ψ ∈ FmL:

Γ ∪ {φ} ` ψ iff Γ ` (φ→ ψ).

Proof. The implication from right to left is an easy consequence of Lemma
2.5.3 part 2 above–i.e. of MP.

For the other implication, supppose ψ0, . . . , ψn is a deduction from Γ ∪ {φ} of
ψ. We show, by induction on i, that Γ ` (φ→ ψi) for all i ≤ n. Since ψi = ψ this
will establish Γ ` (φ → ψ). So let i ≤ n and assume as inductive hypothesis that
Γ ` (φ→ ψj) for all j < i.

There are two cases. If ψi ∈ Λ ∪ Γ then Γ ` ψi hence Γ ` (φ → ψi) by
MP since (ψi → (φ → ψi)) is a tautology. If, on the other hand, ψi follows
by MP then there are j, k < i such that ψk = (ψj → ψi). By the inductive
hypothesis, Γ ` (φ→ ψj) and Γ ` (φ→ (ψj → φi)). Use of MP and the tautology
(φ→ (ψj → ψi))→ ((φ→ ψj)→ (φ→ ψi)) yields the conclusion Γ ` (φ→ ψ). �

The use of the Deduction Theorem is to reduce the question of finding a de-
duction of (φ→ ψ) from Γ to that of finding a deduction of ψ from Γ ∪ {φ}. This
second question will usually be easier since ψ is shorter than (φ→ ψ).

Our first reduction for universally quantified formulas is not completely satis-
factory, but will be imporved later.

Lemma 4.5. (Generalization) Assume x does not occur free in any formula
in Γ. Then Γ ` φ iff Γ ` ∀xφ.

Proof. The implication from right to left is easily established. For the other
direction, suppose φ0, . . . , φn is a deduction from Γ of φ. We show that Γ ` ∀xφi
for all i ≤ n, by induction. So, let i ≤ n and suppose as induction hypothesis that
Γ ` ∀xφj for all j < i. If φi ∈ Λ then also ∀xφi ∈ Λ and thus Γ ` ∀xφi. If φi ∈ Γ
then x /∈ Fv(φi) hnce (φi → ∀xφi) ∈ Λ and thus Γ ` ∀xφi by MP. If φi follows by
MP then there are j, k < i such that φk = (φj → φi). By the inductive hypothesis,
Γ ` ∀xφj and Γ ` ∀x(φj → φi). Now (∀x(φj → φi)→ (∀xφj → ∀xφi)) ∈ Λ so two
uses of MP yield Γ ` ∀xφi as desired. �

To remove the restriction in the statement of Generalization, we first prove a
result about changing bound variables.

Lemma 4.6. Assume the variable y does not occur in φ. Then (1) ` (∀xφ →
∀yφxy) and (b) ` (∀yφxy → ∀xφ).

Proof. (a) Since y is substitutible for x in φ, ∀y(∀xφ → φxy) ∈ Λ. Using
an appropriate axiom of form 3) and MP we conclude ` (∀y∀xφ → ∀yφxy). Since
y /∈ Fv(∀xφ) we have (∀xφ → ∀y∀xφ) ∈ Λ and so ` (∀xφ → ∀yφxy) using MP and
an appropriate tautology.
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(b) One first proves that, since y does not occur in φ, we have that x is substi-
tutible for y in φxy and that (φxy)yx = φ. This result then follows from (a). Details
are left to the reader. �

Corollary 4.7. (Generalization) Assume y does not occur in φ and y does
not occur free in any formula in Γ. Then Γ ` φxy iff Γ ` ∀xφ.

Proof. The implication from right to left is easy, so we just establish the other
direction. If Γ ` φxy then the first form of Generalization yields Γ ` ∀yφxy . But the
above lemma implies Γ ` (∀yφxy → ∀xφ), so we conclude Γ ` ∀xφ. �

Thus to show ∀xφ is deducible from some Γ in which x occurs free, we first
choose y not occurring in φ and not occurring free in Γ and then show Γ ` φxy .
Since we virtually always are considering only sets Γ which have just finitely many
free variables total, this choice of y is not a problem.

Before considering formulas of the form ¬φ, we introduce the important notion
of consistency and use it to characterize deducibility.

Definition 4.4. (1) The set Γ of formulas is inconsistent iff there is some
θ ∈ FmL such that Γ ` θ and Γ ` ¬θ. (2) The set Γ is consistent iff Γ is not
inconsistent.

We first note the following easy characterization of inconsistency.

Lemma 4.8. A set Γ ⊆ FmL is inconsistent iff Γ ` φ for every φ ∈ FmL.

Proof. The implication from right to left is clear. For the other direction,
suppose Γ ` θ and Γ ` ¬θ. For any φ ∈ FmL, (θ → (¬θ → φ)) is a tautology, hence
Γ ` φ with two uses of MP. �

The following theorem enables us to reduce deducibility to (in-) consistency.

Theorem 4.9. Let Γ ⊆ FmL, φ ∈ FmL. Then Γ ` φ iff Γ ∪ {φ} is not
consistent.

Proof. If Γ ` φ then Γ∪{φ} is inconsistent since both φ and ¬φ are deducible
from it. If Γ ∪ {φ} is inconsistent then, by the preceding lemma, we see that in
particular Γ ∪ {¬φ} ` φ and so Γ ` (¬φ → φ), by the Deduction Theorem. But
((¬φ→ φ)→ φ) is a tautology, and so we conclude Γ ` φ. �

In particular we derive a method of showing the deducibility of formulas of the
form ¬φ.

Corollary 4.10. (Proof by Contradiction) Γ∪ {φ} is inconsistent iff Γ `
¬φ.

This may not actually be very useful, since showing Γ ∪ {φ} is inconsistent
is completely open-ended–what contradiction θ, ¬θ you should try to derive is
unspecified. As a prcatical matter of showing the deducibility of ¬θ it is usually
better to use one of the following, if at all possible.

Lemma 4.11. (1) Γ ` φ iff Γ ` ¬¬φ. (2) Γ ` ¬(φ→ ψ) iff Γ ` φ and Γ ` ¬ψ.
(3) Γ ∪ {φ} ` ψ iff Γ ∪ {¬φ} ` ¬φ.
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The proofs are immediate consequences of appropriate tautologies and are left
to the reader.

As an example of showing deducibility using the established rules, we show
that ` (∃x∀yφ → ∀y∃xφ), that is ` (¬∀x¬∀yφ → ∀y¬∀x¬φ). By the Deduction
Theorem it suffices to show ¬∀x¬∀yφ ` ∀y¬∀x¬φ; by Generalization (y not being
free in ¬∀x¬∀yφ) it suffices to show ¬∀x¬∀yφ ` ¬∀x¬φ. By Lemma 2.5.9 part 3
it suffices to show ∀x¬φ ` ∀x¬∀yφ. By Generalization (since x /∈ Fv(∀x¬φ)) it
suffices to show ∀x¬φ ` ¬∀yφ. Finally, by the corollary “Proof by Contradiction”
(nothing else being applicable, it suffices to show Γ = {∀x¬φ, ∀yφ} is inconsistent.
But this is now easy, since Γ ` ¬φ and Γ ` φ.

The “Soundness” result from earlier in this section has the following form ap-
plied to consistency.

Corollary 4.12. (Soundness) Assume Γ ⊆ FmL is satisfiable. Then Γ is
consistent.

Proof. Suppose Γ is inconsistent. Then Γ ` ∀x¬ ≡ xx. So by Soundness we
have Γ |= ∀x¬ ≡ xx. Thus, if Γ is satisfiable on A then necessarily, A |= ∀x¬ ≡ xx–
which is impossible. �

The Completeness Theorem proved in the next chapter will establish the con-
verses of the two Soundness results, that is we will conclude the following equiva-
lences.

Theorem 4.13. Let Γ ⊆ FmL. Then (1) for any φ ∈ FmL, Γ ` φ iff Γ |= φ;
(2) Γ is consistent iff Γ is satisfiable.

The importance of this result is that facts about deducibility and consistency
can be translated into facts about logical consequence and satisfiability. The most
important such general fact is the translation of the easy finiteness property of
deductions.

Lemma 4.14. (1) Γ ` φ iff Γ0 ` φ for some finite Γ0 ⊆ Γ. (2) Γ is consistent
iff every finite Γ0 ⊆ Γ is consistent.

Both parts of the lemma are immediate from the fact that any specific deduction
from Γ uses just finitely many formulas from Γ and thus is a deduction from a finite
subset of Γ.

Using the Completeness Theorem the Finiteness Lemma becomes the highly
important, and non-obvious, Compactness Theorem.

Theorem 4.15. Let Γ ⊆ FmL. Then (1) Γ |= φ iff Γ0 |= φ for some finite
Γ0 ⊆ Γ; (2) Γ is satisfiable iff every finite Γ0 ⊆ Γ is satisfiable.

For the proof of Completeness we will need two further facts about deducibility,
both of which concern constant symbols. Recall that we defined φcy as the result
of replacing all occurrences of c in φ by the variable y. The resulting formula has
no occurrences of c, and (φcy)yc = φ provided y does not occur in φ. The content of
the following lemma is that this substitution preserves deducibility from sets Γ in
which c does not occur.

Lemma 4.16. Let c be a constant symbol of Lnot occurring in any formula in
Γ. Let φ0, . . . , φn be a deduction from Γ and let ψi = (φi)

c
y where y is a variable

not occurring in any of φ0, . . . , φn. Then ψ0, . . . , ψn is also a deduction from Γ.
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Proof. If φi ∈ Γ then ψi = φi since c does not occur in any formula in Γ. If φi
follows by MP by φj , φk then it is easily checked that ψi likewise follows by MP from
ψj , ψk. It thus suffices to show that ψi ∈ Λ if φi ∈ Λ. This is tedious–especially for
tautologies–but not essentially difficult, so we leave it to the reader. �

Our first corollary of this is yet another form of Generalization.

Corollary 4.17. (Generalization on Constants) Assume c does not occur
in Γ and Γ ` φxc . Then Γ ` ∀xφ.

Proof. Let φ0, . . . , φn be a deduction of φxc from Γ and let y be a variable
not occurring in any of φ0, . . . , φn. Let ψi = (φi)

c
y. Then ψ0, . . . , ψn is a deduction

from Γ, by the lemma, and hence from

Γ0 = {φi| φi ∈ Γ, i ≤ n} = {ψi| ψi ∈ Γ, i ≤ n}.
Thus Γ0 ` (φxc )cy. But (φxc )cy = φxy since y does not occur in φxc . Further y does
not occur (free) in any formula of Γ0, so the second form of Generalization yields
Γ0 ` ∀xφ, and so Γ ` ∀xφ. �

The second consequence of this lemma concerns the result of changing lan-
guages. Suppose L ⊆ L′, Γ ⊆ FmL, φ ∈ FmL. We then really have two different
definitions of “φ is deducible from Γ” according to whether the deduction consists
only of formulas of Lon whether formulas of L′ are allowed. Let us express these as
Γ `L φ, Γ ` L′φ. Clearly, if Γ `L φ then Γ `L′ φ. The converse is much less clear.
We are, however, able to prove this now provided that L′ − L consists entirely of
constant symbols.

Theorem 4.18. Assume L ⊆ L′ and L′ −L consists entirely of constant sym-
bols. Let Γ ⊆ FmL. Then (1) for any φ ∈ FmL, Γ `L φ iff Γ `L′ φ; (2) Γ
is consistent with respect to L-deductions iff Γ is consistent with respect to L′-
deductions.

Proof. (1) Let φ0, . . . , φn be an L′-deduction from Γ of φ. Let c0, . . . , cm list
all constants from L′−L appearing in this deduction–so this is an (L∪{c0, . . . , cm}-
deduction. Let ψ0

i = (φi)
c0
y0 for each i = 0, . . . , n where y0 is a variable not occurring

in any of φ0, . . . , φn. Then by the lemma ψ0
0 , . . . , ψ

0
n is a deduction from Γ consisting

of formulas of L ∪ {c1, . . . , cm}. Since φn = φ ∈ FmL we have ψ0
n = φn, so this

is still a deduction of φ. Repeating this for c1, . . . , cm we eventually arrive at a
deduction from Γ of φ consisting just of formulas of L.

(2) This follows immediately from (1). �

5. Theories and Their Models

There are two different paradigms for doing mathematics. One is to study all
structures in some class defined by certain properites. The other is to study some
specific structure. An example of the first would be group theory, which investigates
the class of all structures satisfying the group axioms. An example of the second
would be real analysis, which studies the particular structure of the real numbers.

Both of these paradigms have counterparts in logic. What is charateristic of
the logical approach in both cases is that the properties used to define the class of
structures, and the properties of the structures themselves, should be expressible
in first order logic. To begin with we concentrate on the first paradigm.

First some terminology.
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Definition 5.1. Let Σ ⊆ SnL. Then the set of consequences of Σ is

CnL(Σ) = {θ ∈ SnL| Σ |= θ}.

Note that if L ⊂ L′ and Σ ⊆ SnL then CnL(Σ) ⊂ CnL′(Σ). Nevertheless we
will frequently omit the subscript Lif there is no chance of confusion.

Definition 5.2. Let Σ ⊆ SnL. Then the class of models of Σ is

ModL(Σ) = {L-structures A| A |= Σ}.

We note the following easy fact.

Lemma 5.1. Let Σ1,Σ2 ⊆ SnL. Then Cn(Σ1) = Cn(Σ2) iff Mod(Σ1) =
Mod(Σ2).

We think of a set Σ of sentences as the axioms of a theory. Then Mod(Σ) is
the calss of models of the theory, and Cn(Σ) is the set of theorems of the theory,
that is the set of sentences true on all models of the theory. By the above lemma,
two sets of sentences have the same models iff they have the same consequences. In
this case we will consider them to both define the same theory. This is conveniently
captured in the following definition.

Definition 5.3. (1) By a theory of Lis meant any set of sentences of Lof the
form T = CnL(Σ), Σ ⊆ SnL. (2) If T is a theory of Lthen any set Σ ⊆ SnL such
that T = CnL(Σ) is called a set of axioms for T .

Lemma 5.2. Let T ⊆ SnL. Then T is a theory of Liff T = CnL(T ).

The largest thoery of Lis T = SnL. This theory has no models and can be
axiomatized by the negation of any logically valid sentence of L, for example ∀x¬ ≡
xx.

The smallest theory of Lis T = {θ ∈ SnL| |= θ}. This theory is equal to
CnL(∅) and every structure of Lis a model of it.

In between these extremes are the theories of T which have models but which
are not satisfied by every L-structure. One important kind of example is given by
the (complete) theory of an L-structure.

Definition 5.4. Let A be an L-structure. Then the (complete) theory of A is

Th(A) = {σ ∈ SnL| A |= σ}.

Definition 5.5. Let T be a theory of L. Then T is complete iff T has a model
and for every σ ∈ SnL either σ ∈ T or ¬σ ∈ T .

The following fact is easily verified.

Lemma 5.3. A set T ⊆ SnL is a complete theory of Liff T = Th(A) for some
L-structure A. In this case T = Th(A) for every A |= T .

The complete theory of A tells you everything about A that can be expressed by
first order sentences of L. Having the same complete theory defines a very natural
equivalence relation on the class of L-structures.

Definition 5.6. L-structures A and B are elementarily equivalent written
A ≡ B iff Th(A) = Th(B).
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We will see later that elementarily equivalent structures may look very different–
to begin with, they may have universes of different cardinalities. In fact, we will
prove in Chapter 3 that whenver A is infinite (meaning A, the universe of A, is
infinite) then there is a B such that A ≡ B and |A| < |B|.

The natural question is how much “alike” must elementary equivalent struc-
tures be? This is vague, but we will interpret this to mean what can we prove about
the models of a complete theory? This will in fact be the central topic of much of
Part B, in partiuclar of Chapter 5.

Even more fundamental is the question of how we would show that two struc-
tures A,B are elementarily equivalent. We won’t be able to prove directly that
for every θ ∈ SnL we have A |= σ iff B |= σ. If for a given A we could explicitly
determine (“write down”) a set Σ of axioms for Th(A) then we could conclude that
B ≡ A iff B |= Σ. But determining whether or not Σ axiomatizes a complete
theory is of the same level of difficulty–we are not going to be able to prove directly
that for every θ ∈ SnL we have either Σ |= θ or Σ |= ¬θ but not both.

We will in fact develop some techniques for showing that a theory given ax-
iomatically is complete, although they will be of restricted applicability. More
importantly, we will develop techniques for showing that a theory–including one
given in the form Th(A)–will have models with certain properties. These tech-
niques will not yield a complete description of the structures proved to exist, but
they yield a great deal of information about the models of a theory.

As a beginning step we introduce isomorphisms between L-structures and prove
that isomorphic L-structures are elementarily equivalent. Roughly speaking, two
structures are isomorphic provided there is a one-to-one correspondence between
their universes which “translates” one structure into the other.

Definition 5.7. Given L-structures A,B a function h is an isomorphism of
A onto B, written h : A ∼= B, iff h is a function mapping A one-to-one onto
B such that (i) h(cA) = cB for all constants c ∈ L, (ii) h(FA(a1, . . . , am)) =
FB(h(a1), . . . , h(am)) for all m-ary function symbols F ∈ L and all a1, . . . , am ∈ A,
(iii) RA(a1, . . . , am) holds iff RB(h(a1), . . . , h(am)) for all m-ary relation symbols
R ∈ L and all a1, . . . , am ∈ A.

The reader should note that this definition agrees with the familiar algebraic
definition on algebraic structures like groups, rings, etc. Since isomorphic structures
are “the same” except for the identity of the elements of their universes it is not
surprising that they will be elementarily equivalent. In fact, we prove something
stronger.

Theorem 5.4. Let A,B be L-structures and assume h : A ∼= B. Then
for every φ(x0, . . . , xn−1) ∈ FmL and for all a0, . . . , an−1 ∈ A we have AA |=
φ(ca0 , . . . , can−1

) iff BB |= φ(cb0 , . . . , cbn−1
) where bi = h(ai), i = 0, . . . , n− 1.

Proof. One first shows by induction on TmL that for every t(x0, . . . , xn−1) ∈
TmL and every a0, . . . , an−1 ∈ A,

h(tA(a0, . . . , an−1)) = tB(h(a0), . . . , h(an−1)).

This argument is left to the reader. One next shows the equivalence in the statement
of the theorem by induction on FmL. We do two parts of the argument and leave
the rest to the reader.
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If φ is the atomic formula ≡ t1t2, then the following are equivalent:

AA |= φ(ca0 , . . . , can−1),

tA1 (a0, . . . , an−1) = tA2 (a0, . . . , an−1),

h(tA1 (a0, . . . , an−1)) = h(tA2 (a0, . . . , an−1)),

tB1 (h(a0), . . . , h(an−1)) = tB2 (h(a0), . . . , h(an−1)),

BB |= φ(cb0 , . . . , cbn−1
).

The equivalence of the second and third lines follows since h is one-to-one, and the
equivalence of the third and fourth lines follows from the preliminary lemma on
TmL.

Suppose φ(x0, . . . , xn−1) = ∀yψ(x0, . . . , xn−1, y) and, as inductive hypothe-
sis, that the equivalence holds for ψ and for all a0, . . . , an−1, a ∈ A. Fixing
a0, . . . , an−1 ∈ A the following are equivalent:

AA |= φ(ca0 , . . . , can−1
),

AA |= ψ(ca0 , . . . , can−1 , ca) for all a ∈ A,

BB |= ψ(cb0 , . . . , cbn−1
, ch(b)) for all a ∈ A,

BB |= ψ(cb0 , . . . , cbn−1
, cb) for all b ∈ B,

BB |= φ(cb0 , . . . , cbn−1).

The equivalence of the second and third lines follows from the inductive hypothesis,
and the equivalence of the third and fourth lines follows since h maps A onto B. �

As usual we say A and B are isomorphic, written A ∼= B, iff there is an
isomorphism h of A onto B. Further an automorphism of A is an isomorphism h
of A onto itself.

Example 5.1. Let Lbe the language whose only non-logical symbol is a binary
relation symbol R. Let A = (ω,≤) and B = (B,≤) where B = {2k| k ∈ ω}. Then
A and B are isomorphic via the mapping h : A → B defined by h(k) = 2k for all
k ∈ ω. All that needs to be checked is that h maps A one-to-one onto B and that
RA(k, l) holds iff RB(h(k), h(l)) holds, that is k ≤ l iff 2k ≤ 2l.

Example 5.2. With Las in the previous example, et A = (Z,≤). Then for
every k0, l0 ∈ A there is an automorphism h of A such that h(k0) = l0. We leave
the reader to check that h defined by h(k) = k + (l0 − k0) works.

Note that it follows, in this example, that for every φ(x) ∈ FmL and every
k0, l0 ∈ A we have

AA |= φ(ck0) iff AA |= φ(cl0).

It follows that either φA = A or φA = ∅.

Example 5.3. Let Lbe the language whose only non-logical symbol is a con-
stant symbol c. Let A,B be any two L-structures with |A| = |B|. Then A ∼= B.

Let A0 = A − {cA}, B0 = B − {cB}. Then |A0| = |B0|, so there is some
one-to-one function h0 mapping A0 onto B0. Define h : A → B by h(a) = h0(a)
for a ∈ A0 and h(a) = cB otherwise. Then h : A ∼= B.
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Example 5.4. Let Lhave as its only non-logical symbols the constants cn for
n ∈ ω. Let T = CnL({¬ ≡ cncm| n < m ∈ ω}). Let A,B both be models of T
with |A| = |B| > ω. Then A ∼= B.

Let A0 = A − {cAn | n ∈ ω} and let B0 = B − {cBn | n ∈ ω}. Then |A0| =
|A| = |B| = |B0| since A and B are uncountable. Thus there is some one-to-one h0

mapping A0 onto B0. Define h : A → B by h(a) = h0(a) if a ∈ A0, h(cAn ) = cBn ,
all n ∈ ω. Then h is well-defined and one-to-one, since both A,B |= T , hence
h : A ∼= B.

The reader should check that this theory has exactly ω many non-isomorphic
countable models–one for each cardinality for A0.

The statement of the theorem above on isomorphisms does not say that AA ≡
BB . This usually wouldn’t even make sense since these would be structures for
different languages. However if h : A ∼= B then B can be expanded to an L(A)-
structure B∗ such that AA ≡ B∗ by defining (ca)B

∗
= h(a), and if we add the

condition that B = {cB∗ | c ∈ L(A)} then this is equivalent to A ∼= B.

6. Exercises

(1) Show directly from the definitions or produce a counterexample to each of the
following.
(a) |= (∃xPx→ ∀xQx)→ ∀x(Px→ Qx)
(b) |= (Px→ Qy)→ (∃xPx→ ∃yQy)

(2) Establish the following, using the rules from the notes.

` ∀x(Px→ Qy)→ (∃xPx→ Qy)

(3) (a) Let Lnl = {R, d} where R is a binary relation symbol and d is an individual
constant symbol, and let A = (Z, <, 0).

(i) Find an L-formula ϕ(x) such that ϕA = {−1}
(ii) Determine ψA where ψ(x, y) is ∀z(Rxz → ¬Rzy).

(b) Let Lnl = {F} where F is a binary function symbol. Let A = (ω,+) and
let B = (Q,+). Find a setence σ of L such that A |= σ and B |= ¬σ.

(4) Let L be any language and let Φ = {ϕn : n ∈ ω} ⊆ FmL. Assume that Φ is
inconsistent. Prove that there is some n ∈ ω such that

` (¬ϕ0 ∨ · · · ∨ ¬ϕn)

(5) Establish the following:

` (∃x∀yRxy → ∃yRyy).

(6) Prove Theorem 2.2.2 about unique readability of terms.
(7) Let Lnl = {R,E, P} where R is binary and E and P are both unary relation

symbols. Let A be the L-structure with A = ω where RA is ≤, EA is the set of
even numbers and PA is the set of prime numbers. Give sentences of L which
‘naturally’ express the following facts about A.
(a) There is no largest prime number.
(b) There is exactly one even prime number.
(c) The smallest prime number is even.
(d) The immediate successor of an even number is not even.

(8) Let Lnl = {R} where R is a binary relation symbol, and let A = (ω,<).
Determine ϕA where:



47

(a) ϕ is ∀y(Ryx→ ¬Ryx)
(b) ϕ is ∀z(Rzx ∨Ryz)

(9) Let Lnl = {F,G} where F and G are both binary function symbols, and let
B = (R,+, ·). Find L-formulas with the following properties:
(a) ϕB

1 = {1}
(b) ϕB

2 = {a ∈ R : 0 ≤ a}
(c) ϕB

3 = {(a1, a2) ∈ R2 : a1 < a2}
(d) ϕB

4 = {(a1, a2) ∈ R2 : |a1| = |a2|}
(10) Let Lnl = {R} where R is a binary relation symbol, and let A1 = (ω,≤),A2 =

(Z,≤),A3 = (Q,≤) and A4 = (ω r {0}, |). For each 1 ≤ i < j ≤ 4 find a
sentence σi,j of L such that Ai |= σi,j but Aj |= ¬σi,j .

(11) Fix a sequence {θi}i∈ω of sentences of L. For any sentence σ of sentential logic
let σ∗ be the result of replacing all occurences of Si in σ by θi for each i ∈ ω.
(a) Give a definition by recursion of σ∗.
(b) Define, for each L-structure A, a truth assignment hA such that for every

σ of sentential logic we have hA |= σ iff A |= σ∗. (Note that it follows that
σ∗ is valid whenever σ is a tautology.)

(12) Given Σ1,Σ2 ⊆ SnL define Σ∗ = {θ ∈ SnL : Σ1 |= θ and Σ2 |= θ}. Prove that
for every L-structure A,A |= Σ∗ iff either A |= Σ1 or A |= Σ2.





CHAPTER 3

The Completeness Theorem

0. Introduction

In this chapter we prove the most fundamental result of first order logic, the
Completeness Theorem. The two forms of Soundness, from Chapter 2, give one
direction of the biconditionals, and thus we need to establish the following.

Theorem 0.1. Let Γ ⊆ FmL. Then: (1) for any φ ∈ FmL, if Γ |= φ then
Γ ` φ; (2) if Γ is consistent then Γ is satisfiable.

Further, due to the equivalences Γ ` φ iff Γ∪ {¬φ} is not satisfiable, it suffices
to establish (2) above. As we will argue in more detail later, the full version of (2)
for sets Γ of formulas with free variables follows from the version for sentences. We
therefore concentrate on establishing the following Model Existence Theorem.

Theorem 0.2. Every consistent set Σ of sentences of Lhas a model.

In our proof of this result we will first define a special sort of sets of sentences
called Henkin sets–these sets will look roughly like sets of the form Th(AA). We will
show that Henkin sets determine structures which are their models, in essentially
the same way in which we could recover AA from Th(AA). This will be done in the
next section. In Section 3.3, we will show that if Σ is any consistent set of sentences
of L, then Σ ⊆ Γ for some Henkin set Γ of sentences of L′, where L′ is a language
obtained from Lby adding new constant symbols. This will finish the proof of the
Completeness Theorem.

In Section 4, we derive two of the most important consequences of the Com-
pleteness Theorem. These are the Compactness Theorem and Löwenheim-Skolem
Theorem. We then give several applications of these results to the study of theories
and their models, as initiated in the preceding chapter.

1. Henkin Sets and Their Models

How could we use a set of sentences to define a structure which will be a model
of the set? In defining a structure you need to specify the elements of the (universe
of the) structure and specify the interpretations of the non-logical symbols of the
language on the universe. For this information to be provided by a set of sentences,
the language should contain constants for all elements of the structure and contain
all the sentences with these constants true on the structure. Thus it should be
roughly like Th(AA) in the language L(A).

The trick here is to decide on the necessary properties the set of sentences
should have without knowing A to begin with. The following definitions collect all
the properties we will need.

Definition 1.1. Let Γ ⊆ SnL.

49
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(a) Γ is a complete set of sentences of Liff
(i) for every sentence θ of L¬θ ∈ Γ iff θ /∈ Γ, and
(ii) for all φ, ψ ∈ SnL, (φ→ ψ) ∈ Γ iff either ¬φ ∈ Γ or ψ ∈ Γ.
(b) Γ has witnesses iff for every φ(x) ∈ FmL we have ∀xφ ∈ Γ iff φ(c) ∈ Γ for

all constants c of L.
(c) Γ respects equality iff the following hold for all closed terms

t, t′, t1, . . . , tm, t
′
1, . . . , t

′
m of L:

(i) ≡ tt ∈ Γ,
(ii) if ≡ tt′ ∈ Γ then ≡ t′t ∈ Γ,
(iii) if ≡ t1t2 ∈ Γ and ≡ t2t3 ∈ Γ then ≡ t1t3 ∈ Γ,
(iv) if ≡ tit

′
i ∈ Γ for all i = 1, . . . ,m then ≡ Ft1 . . . tmFt

′
1 . . . t

′
m ∈ Γ for every

m-ary function symbol F of L,
(v) if ≡ tit′i ∈ Γ for all i = 1, . . . ,m and if Rt1 . . . tm holds where R is an m-ary

relation symbol of Lthen Rt′1 . . . t
′
m ∈ Γ,

(vi) there is some constant c with ≡ tc ∈ Γ.

Note that we continue in this chapter to assume that all sentences are written
using just the connectives ¬,→ and the quantifier ∀. A set Γ can be a complete set
of sentences without being a complete theory, since it need not have a model. The
additional properties are needed to guarantee that the set has a model.

If A is any L-structure and we define Γ = Th(AA) then Γ is a complete set
of L(A)-sentences which has witnesses and respects equality. Our first goal is to
see that every complete set of sentences with witnesses which respects equality
determines a structure which is a model of the set.

Definition 1.2. Let Γ ⊆ SnL and let A be an L-structure. Then A is a
canonical structure determined by Γ iff the following hold:

(i) a = {cA| c is a constant of L},
(ii) for each m-ary relation symbol R of Land all c1, . . . , cm ∈ L,

RA(cA1 , . . . , c
A
m) holds iff Rc1 . . . cm ∈ Γ.,

(iii) for all c1, c2 constants in L, cA1 = cA2 iff ≡ c1c2 ∈ Γ,
(iv) for each m-ary function symbol F of Land all c1, . . . , cm, d ∈ L, FA(cA1 , . . . , c

A
m) =

dA iff ≡ Fc1 . . . cmd ∈ Γ.

Note that a given Γ may not determine any canonical structure, but any two
canonical structures determined by Γ are isomorphic. Thus we will speak of the
canonical structure for Γ. AA is the canonical structure determined by Th(AA).

Theorem 1.1. Let Γ be a complete set of sentences of Lwhich has witnesses
and respects equality. Then Γ determines a canonical structure.

Proof. Let C be the set of constant symbols in L. We define the relation ∼Γ

on C by c ∼Γ d iff ≡ cd ∈ Γ. Then ∼Γ is an equivalence relation on C, since Γ
respects equality.

For c ∈ C we define c/∼Γ= {d ∈ C| c ∈ C}.
We now proceed to define the structure A. Let A be any set such that |A| = |{c/∼Γ

| c ∈ C}|, and let h : {c/∼Γ | c ∈ C} → A be one-to-one and onto.
For any constant c ∈ L (hence in C), define cA by cA = h(c/∼Γ).

For any m-ary relation symbol R of Land any c1, . . . , cm ∈ C, define RA by saying
RA(cA1 , . . . , c

A
m) holds iff Rc1 . . . cm ∈ Γ.

For any m-ary function symbol F of Land any c1, . . . , cm, d ∈ C define FA by
FA(cA1 , . . . , c

A
m) = dA iff ≡ Fc1 . . . cmd ∈ Γ.
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Then RA, FA are well-defined since Γ respects equality, and also cA1 = cA2 iff
≡ c1c2 ∈ Γ. Thus A is a canonical structure determined by Γ, as desired. �

Theorem 1.2. Let Γ be a complete set of sentences of Lwhich has witnesses
and respects equality. Let A be the canonical structure determined by Γ. Then
A |= Γ.

Proof. We first must show that for every closed term t of Land every constant
symbol c of L, if ≡ ct ∈ Γ then tA = cA. We leave this proof, by induction on lh(t)
and using the assumption that Γ respects equality, to the reader.

We now show, by induction on lh(θ) for θ ∈ SnL, that A |= θ iff θ ∈ Γ.
As inductive hypothesis suppose this equivalence holds for all θ ∈ SnL with

lh(θ) < n. Now consider θ with lh(θ) = n. There are several cases.
If θ is ≡ t1t2 for closed terms t1, t2 then (since Γ respects equality) there are

constants c1, c2 ∈ L such that ≡ c1t1,≡ c2t2 ∈ Γ. By the preliminary result on
terms, tA1 = cA1 and tA2 = cA2 . Since Γ respects equality we know ≡ c1c2 ∈ Γ, hence
cA1 = cA2 by the definition of canonical structure. Therefore tA1 = tA2 , hence A |= θ.

The argument is similar when θ is Rt1 . . . tm and therefore left to the reader.
The cases in which θ = ¬φ or θ = (φ→ ψ) are easy using the hypothesis that

Γ is a complete set of sentences.
We conclude by considering the case θ = ∀xφ(x). Then, since A is a canonical

structure we have A |= θ iff A |= φ(c) for all c ∈ L. Now

lh(φ(c)) = lh(φ) < lh(θ)

so the inductive hypothesis holds for every φ(c). Therefore we see A |= θ iff φ(c) ∈ Γ
for all c ∈ L. But Γ has witnesses, so φ(c) ∈ Γ for all c ∈ L iff ∀xφ ∈ Γ. Thus
A |= θ iff θ ∈ Γ, which finishes the proof. �

Note that we have nowhere assumed that the set Γ is consistent, although it
follows from having a model. When we add consistency, the list of other properties
Γ must have for the preceding two theorems to hold can be considerably shortened.

Definition 1.3. Let Γ ⊆ SnL. Then Γ is a Henkin set of sentences of Liff the
following hold:

(i) Γ is consistent,
(ii) for every θ ∈ SnL either θ ∈ Γ or ¬θ ∈ Γ,
(iii) for every formula φ(x) of Lif ¬∀xφ(x) ∈ Γ then ¬φ(c) ∈ Γ for some c ∈ L.

Lemma 1.3. Let Γ be a Henkin set of sentences of L. Then for every φ ∈ SnL,
φ ∈ Γ iff Γ ` φ.

Proof. From left to right is clear. For the other direction, if φ /∈ Γ then
¬φ ∈ Γ (by condition (ii) in the definition of Henkin sets), so Γ ` ¬φ and therefore
Γ 6` φ by the consistency of Γ. �

We thus establish the following theorem.

Theorem 1.4. Let Γ ⊆ SnL. Then Γ is a Henkin set iff Γ is complete, has
witnesses, and respects equality.

Proof. If Γ is complete, has witnesses and respects equaltiy then we have
shown that Γ has a model, so Γ is consistent and therefore a Henkin set.
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For the other direction, assume Γ is a Henkin set. Then Γ is easily shown to
be complete, using the lemma. Similarly Γ is easily shown to have witnesses, using
the lemma and the fact that

Γ ` (∀xφ(x)→ φ(c)

for all constants c of L. Further, Γ is easily seen to respect equality, using the
lemma and noting (for condition (vi)) that ` ¬∀x¬ ≡ tx hence ¬∀x¬ ≡ tx ∈ Γ,
and so ≡ tc ∈ Γ for some c. �

To summarize, we have shown that every Henkin set of sentences has a model,
which is in fact the canonical structure it determines. In the next section we show
that consistent sets of sentences can be extended to Henkin sets of sentences–in
some larger language.

2. Constructing Henkin Sets

The work in the preceding section reduces the Model Existence Theorem at the
beginning of section 3.1, to the following, purely syntactical result.

Theorem 2.1. Let Σ be a consistent set of sentences of L. Then there is some
L′ ⊇ L and some Henkin set Γ of sentences of L′ such that Σ ⊆ Γ.

It is clear that we will normally be forced to have L 6= L′ in this theorem
(for example, Lmay not have any constant symbols). On the other hand, we will
need to guarantee that the set Σ we begin with remains consistent with respect to
L′-deductions. Thus we will need to have that (L′ − L) consists just of constant
symbols.

Given L, the question is: how many new constant symbols must we add to Lto
obtain a language L′ such that the above extension result can be established? The
answer–which is easier to justify after the fact–is that |L| new constants will suffice.

We give the argument in detail for the case in which Lis countable, after which
we indicate how the general case could be proved.

So, fix a countable language L. Let C be a countably infinite set of individual
constant symbols not in Land let L′ = L ∪ C. Then L′ is also countable thus in
particular |SnL′ | = ω, so we may list the sentences of L′ as SnL′ = {σn| n ∈ ω}.

Now let Σ be a consistent set of sentences of L. Then Σ remains consistent
with respect to L′-deductions, as established by Theorem 2.4.5. We wish to define
a set Γ of sentences of L′ which is a Henkin set and contains Σ. We will do this by
defining, by recursion on ω, a chain {Γn}n∈ω of subsets of SnL′ whose union is the
desired Henkin set. This chain will have the following properties: Γ0 = Σ and, for
each n ∈ ω:

(0n) Γn ⊆ Γn+1, Γn+1 is consistent, and (Γn+1 − Γn) is finite;
(1n) either σn ∈ Γn+1 or ¬σn ∈ Γn+1;
(2n) if σn = ∀xφ(x) for some φ(x) and if ¬σn ∈ Γn+1 then ¬φ(c) ∈ Γn+1 for

some c ∈ C.
Assuming {Γn}n∈ω is such a chain we show that Γ =

⋃
n∈ω Γn is a Henkin set

of sentences of L′.
We first show Γ is consistent. If not then some finite Γ′ ⊆ Γ is inconsistent by

the Finiteness Lemma. But then Γ′ ⊆ Γn+1 for some n ∈ ω and so Γn+1 would be
inconsistent, contradicting (0n).

Next, let θ ∈ SnL′ . Then θ = σn for some n ∈ ω and so, by (1n), either
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θ = σn ∈ Γn+1 ⊆ Γ or
¬θ = ¬σn ∈ Γn+1 ⊆ Γ.
Finally, if φ(x) ∈ FmL′ and if ¬∀xφ(x) ∈ Γ then ∀xφ(x) = σn for some n ∈ ω

and necessarily ¬σn ∈ Γn+1 (since σn ∈ Γn+1 ⊆ Γ would contradict the consistency
of Γ), and so, by (2n), ¬φ(c) ∈ Γn+1 ⊆ Γ for some constant c.

We now show how to construct such a chain {Γn}n∈ω by recursion. Suppose
we have Σ = Γ0 ⊆ Γ1 ⊆ · · · ⊆ Γn satisfying (0i), (1i), (2i) for all i < n. Then Γn is
consistent and |Γn − Σ| < ω. We show how to define Γn+1 so that (0n), (1n), (2n)
hold. We obtain Γn+1 in two steps. The first will guarantee (1n) and the second
will guarantee (2n). To ensure (0n) we will only need to preserve consistency in
performing these steps.

We define Γn+ 1
2

as follows:

Γn+ 1
2

= Γn ∪ {σn} if Γn ∪ {σn} is consistent;

Γn+ 1
2

= Γn ∪ {¬σn} if Γn ∪ {σn} is inconsistent.

We claim that in either case Γn+ 1
2

is consistent. This is clear in the first case. If,

on the other hand, Γn∪{σn} is inconsistent then Γn ` ¬σn and so Γn+ 1
2

= Γn∪{σn}
is consistent because Γn is consistent.

From Γn+ 1
2

we define Γn+1 as follows Γn+1 = Γn+ 1
2

if either σn ∈ Γn+ 1
2

or σn
does not have the form ∀xφ; Γn+1 = Γn+ 1

2
∪ {¬φ(c)} where c ∈ C does not occur

in any sentence in Γn+ 1
2

if σn = ∀xφ(x) and ¬σn ∈ Γn+ 1
2
. We must show Γn+1 is

consistent in the second case. If Γn+ 1
2
∪ {¬φ(c)} is inconsistent then Γn+ 1

2
` φ(c).

But c does not occur in Γn+ 1
2

nor in φ(x), and so Generalization on Constants

yields Γn+ 1
2
` ∀xφ(x). But this contradicts the consistency of Γn+ 1

2
. Finally note

that there will be constants in C not occurring in Γn+ 1
2

since no constants in C

occur in Σ, |Γn+ 1
2
− Σ| < ω, and C is infinite.

This completes the proof of the theorem stated at the beginning of this sec-
tion for countable languages L. The same outline may be used for uncountable
languages, but now transfinite recursion is needed.

Suppose |L| = κ and let L′ = L∪C where C is a set of new individual constant
symbols, |C| = κ. Then |L′| = κ hence |SnL′ | = κ and so SnL′ can be listed as
SnL′ = {σξ| ξ ∈ κ}. We define, by recursion on κ, a chain {Γξ}ξ∈κ of subsets of
SnL′ so that Σ = Γ0 and for all ξ ∈ κ we have

(0ξ) Γξ ⊆ Γξ+1, Γξ+1 is consistent, and (Γξ+1 − Γξ) is finite;
(1ξ) either σξ ∈ Γξ + 1 on ¬σ ∈ Γξ+1;
(2ξ) if σξ = ∀xφ(x) and ¬σξ ∈ Γξ+1 then ¬φ(c) ∈ Γξ+1 for some c ∈ C;
and further if ξ is a limit ordinal then Γξ =

⋃
ν<ξ Γν .

The construction proceeds exactly as before noting, for (2ξ), that is ξ ∈ κ and
(0ν) holds for all ν < ξ then |Γξ − Σ| < κ = |C| and hence there will be constants
in C not occurring in Γξ ∪ {¬σξ}.

Since a Henkin set Γ completely determines a canonical structure up to isomor-
phism, we can control some properties of the canonical structure by constructing a
Henkin set with specific properties. We will exploit this later, especially in deriving
the Omitting Types Theorem.

Note that if Σ is a consistent set of sentences of Lthen our proof yields an L-
structure which is a model of Σ–namely the reduct to Lof the canonical L′-structure
determined by the Henkin set Γ of L′-sentences we construct containing Σ.
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3. Consequences of the Completeness Theorem

We very seldom will use the Completeness Theorem directly, thus we will not
prove that ta set Σ of sentences has a model by showing that it is consistent. Instead
we will derive two purely semantic (or, model theoretic) consequences which will
give us virtually everything we will need from Completeness, for the purposes of
model theory. (A third consequence will be given much later in the context of
decidability and the decision problem).

The first of these consequences is the Compactness Theorem, a direct transla-
tion of the Finiteness Lemma. We will argue for the full version later. Since we
have established Completeness for sets of sentences we can at this point conclude
the following version.

Theorem 3.1. (Compactness) Let Σ ⊆ SnL.
(1) For any φ ∈ FmL, Σ |= φ iff Σ0 |= φ for some finite Σ0 ⊆ Σ.
(2) Σ has a model iff every finite Σ0 ⊆ Σ has a model.

To allow formulas φ in part (1) we use the fact that if φ = φ(x0, . . . , xn) then
Σ |= φ iff Σ |= ∀x0 · · · ∀xnφ.

The force of the Compactness Theorem in form (2), as we will see in many
examples, is that you may be able to produce a model AΣ0

of each finite Σ0 ⊆ Σ
without knowing how to define a model of the entire set Σ.

The second consequence is actually a consequence of our proof of the Com-
pleteness Theorem using canonical structures determined by Henkin sets.

Theorem 3.2. (Löwenheim-Skolem) Let κ = |L| and assume that Σ ⊆ SnL
has a model. Then Σ has a model A with |A| ≤ κ.

Proof. Since Σ has a model, and is therefore consistent, our proof of the
Completeness Theorem produced an L-structure A which is a model of Σ and
which is the reduct to Lof the canonical structure A′ determined by a Henkin set
of sentences of some L′ where |L′| = κ. But

A = A′ = {cA
′
| c ∈ L′ is a constant}.

Therefore |A| ≤ |L′| = κ. �

As a first application of the Löwenheim-Skolem Theorem note that if B is any
L-structure, |L| = κ, then there is some L-structure A with |A| ≤ κ such that
A ≡ B. This is immediate by considering Σ = Th(B). The reader should consider
what such a structure A would be if, for example, B is (R,≤) or (R,≤,+, ·)–
both structures for countable languages, hence elementarily equivalent to countable
structures.

The Compactness Theorem is one of the most important tools we have in model
theory. We give here some easy, but typical, examples of its use.

To begin with the Compactness Theorem, in its second form stated above,
is a model existence theorem–it asserts the existence of a model of Σ, given the
existence of models of every finite subset of Σ. We will frequently use it to prove
the existence of structures with certain specified properties. To do so we attempt
to express the properties the structure should have by a set of sentences, and then
use Compactness (or, later, other similar results) to show the set of sentences has
a model.

As a first example of this procedure we prove the following result.
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Theorem 3.3. Let Σ ⊆ SnL and assume that for every n ∈ ω, Σ has a model
An with |An| ≥ n. Then Σ has an infinite model.

Proof. Our conclusion asks for an L-structure A with two properties:
A |= Σ and
|A| is infinite.

Recall that we know a set Θω of sentences (with no non-logical symbols) such for
every L-structure A, |A| is infinite iff A |= Θω. Thus what we want to prove is
precisely that (Σ∪Θω) has a model. By compactness it suffices to show that every
finite Σ0 ⊆ Σ∪Θω has a model. Let Σ0 ⊆ Σ∪Θω be finite. Then Σ0 ⊆ Σ∪{θk| 2 ≤
k < n} for some n ∈ ω. But the hypotheses to this theorem provide a model An of
Σ with at least n elements. Therefore An |= Σ ∪ {θk| 2 ≤ k < n} and so An |= Σ0.
Thus Σ ∪Θω has a model, as desired. �

This theorem enables us to answer some questions we raised earlier.

Corollary 3.4. There is no set Θf of sentences (of any L) whose models
are precisely the finite L-structures. In particular, there is no sentence θω whose
models are precisely the infinite L-structures.

Proof. Such a Θf would have arbitrarily large finite models, hence it would
have infinite models by the theorem–a contradiction. �

We give now a second proof of the above theorem, indicating another technique–
changing languages.

Proof. We show another way to express “A is infinite” with a set of sentences.
Let cn, n ∈ ω be distinct constant symbols not in L. Let L′ = L ∪ {cn| n ∈ ω}
and let Σ′ = {¬ ≡ cncm| n < m ∈ ω}. Then an L-structure is infinite iff it can be
expanded to an L′-structure which is a model of Σ′. Thus to show that the set Σ
of sentences of Lhas an infinite model it suffices to show that (Σ∪Σ′) has a model,
since the reduct to Lof such a model will be as desired. By compactness it suffices
to show that every finite Σ0 ⊆ Σ ∪ Σ′ has a model. If Σ0 ⊆ Σ ∪ Σ′ is finite then
Σ0 ⊆ Σ ∪ {¬ ≡ cncm| n < m ≤ k} for some k ∈ ω. Consider Ak+1–the model of Σ
we are given which has at least k + 1 elements. We show how to expand it to an
L′-structure which will be a model of Σ0. Pick a0, . . . , ak ∈ Ak all different. Define

A′k+1 to be the expansion of Ak+1 such that c
A′k+1
n = a0 for all n > k. Then clearly

A′k+1 is as desired. �

The advantage of this second proof is that it generalizes to yield models of
cardinality ≥ κ for every κ. All you need to do is add κ new constants and consider
the set of sentences asserting they are all different. By combining this with the
Löwenheim-Skolem Theorem we obtain an important stregthening of that result.

Theorem 3.5. Let |L| = κ and assume that Σ ⊆ SnL has an infinite model.
Let λ be a cardinal with κ ≤ λ. Then Σ has a model of cardinality equal to λ.

Proof. Let C be a set of constant symbols not in L, |C| = λ. Let L′ = L∪C.
Note that |L′| = λ since κ ≤ λ. Let Σ′ = {¬ ≡ cd| c, d ∈ C, c 6= d} and define
Σ∗ = Σ ∪ Σ′.

Then, as described above, Σ∗ has a model since every finite Σ0 ⊆ Σ∗ has a
model. Further, every model of Σ∗ has cardinality ≥ λ. Since |L′| = λ the original
Löwenheim-Skolem result implies that Σ∗ has a model A′ of cardinality ≤ λ, and
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so of cardinality exactly = λ due to the property of Σ∗ mentioned previously.
Therefore A = A′ � L is an L-structure which is a model of Σ and which has
cardinality exactly = λ. �

Corollary 3.6. Let A be any infinite structure. Then there is some B such
that A ≡ B but |A| 6= |B|, in particular, A 6∼= B.

Proof. Let Σ = Th(A) and let λ be such that λ ≥ |L| and λ 6= |A|. Then any
model B of Σ of cardinality equal to λ suffices. �

Given an infinite A can we find some B ≡ A such that A 6∼= B and |A| = |B|?
Clearly this is not always possible–for example if Lnl= ∅ and A is any L-structure
then A ∼= B for every L-structure B with |A| = |B|. We will see less trivial
examples of this phenomenon later.

As a final application of Compactness in this section we show that there are
structures A, B for a countable language sucdh that |A| = |B| = ω but A 6∼= B.

Theorem 3.7. Let Lbe the language whose only non-logical symbol is a binary
relation symbol R. Let A be the L-structure (ω,≤). Then there is some L-structure
B, |B| = ω, such that A ≡ B but A 6∼= B.

Proof. As a model existence result, this asserts the existence of an L-structure
B having the following three properties: B ≡ A, A 6∼= B, and |B| = ω. The first
property is expressed by the first order condition B |= Th(A). Provided that we
can guarantee the second property by some set of sentences in a countable language,
then the last can be guaranteed using the Löwenheim-Skolem theorem.

To assert, with first order sentences, that A 6∼= B we first recall that, for each
n ∈ ω, there are L-formulas φn(x) such that φAn = {n}. Thus to be non-isomorphic
to A means having an element satisfying no φn.

So let L′ = L ∪ {d} and let Σ′ = {¬φn(d)| n ∈ ω}. Then if B′ |= Σ′ we must
have

B = B′ �L 6∼= A

since if h : B ∼= A then AA |= ¬φn(ca∗) for all n ∈ ω where a∗ = h(dB
′
). Since no

a∗ ∈ A has this property we must have B 6∼= A.
Thus to show that some countable B ≡ A is not isomorphic to A it suffices to

show (Th(A) ∪ Σ′) has a model.
By Compactness it suffices to show that every finite subset of (Th(A)∪Σ′) has

a model. Let Σ0 ⊆ Th(A) ∪ Σ′ be finite. Then

Σ0 ⊆ Th(A) ∪ {¬φn(d)| n < k}
for some k ∈ ω. We show how to expand A to an L′-structure which is a model of
Σ0. Define A′ by A′ �L = A and dA

′
= k. Then clearly

A′ |= Th(A) ∪ {¬φn(d)| n < k}
as desired. �

A careful examination of this proof will reveal that it applies much more gen-
erally than these particular circumstances. We will give a very general version in
the next chapter.

Note that this proof does not provide any description of what such a B might
look like. The reader should attempt to decide what a good candidate for such a
structure would be.
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4. Completeness Categoricity, Quantifier Elimination

In the preceding section we have proved that for any infinite L-structure A there
are L-structures B such that A ≡ B but A 6∼= B. In particular, if A is (ω,≤) there
is a countable B with this property. These proofs do not give a construction of B
or describe B completely. The question thus remains of whether we can exhibit
such a B explicitly, at least given a specific A.

This leads us to the following, even more fundamental problem:
given non-isomorphic L-structures A,B how can we show that A ≡ B?
In this section we give a simple method that can be applied in some cases.

Although not widely applicable, it will give us several important examples. We will
improve the method later, but the problem in general is intractibly difficult. For
example, let Lbe the language for groups, let A be (the L-structure which is) a free
group on 2 generators, and let B be a free group on 3 generators. It has long been
conjectured that A and B are elementarily equivalent, but no one has been able to
decide the question.

We actually will consider a variant on this problem, namely:
given Σ ⊆ SnL how can we show that T = Cn(Σ) is complete?
This will apply to the preceding problem in the case in which Σ is an explicitly

given set of sentences, and the method would be to show both A and B are models
of Σ.

Certainly if any two models of Σ are isomorphic, then T = Cn(Σ) is complete.
But this will never be the case unless Σ only has models of a fixed finite cardinality.
The method we give here, and will imporve on later, will only require that any two
models of Σ, satisfying some other requirements, be isomorphic. These methods
will apply to (some) theories with infinite models.

Definition 4.1. Let κ be a cardinal number and let T be a theory of some
language L. Then T is κ-categorical iff T has a model of cardinality κ and any two
models of T of cardinality κ are isomorphic.

Theorem 4.1. ( Los̀-Vaught Test) Let T be a theory in a language Land let
κ be a cardinal number, |L| ≤ κ. Assume that T has no finite models and T is
κ-categorical. Then T is complete.

Proof. If T , satisfying the hypotheses, is not complete then there must be
a sentence σ of h such that both T ∪ {σ} and T ∪ {¬σ} have models. In fact,
they must both have infinite models, so by the general form of the Löwenheim-
Skolem Theorem they both have models of cardinality equal to κ. But since these
models must be non-elementarily equivalent this contradicts the hypothesis of κ-
categoricity. �

We give, without much detail, several applications of this test.
(1) Lnl= ∅, T = Cn(∅). Then T is κ-categorical for all κ ≥ 1, but T is not

complete since it has finite models.
(2) Lnl= ∅, T = Cn(Θω). Then T is κ-categorical for all infinite cardinals κ

and has no finite models, hence T is complete.
(3) Lnl= {P} where P is a unary relation symbol. Let Σ be the set of all

sentences asserting “P has at least n elements” and “¬P has at least n elements”
for all positive n ∈ ω. Then an L-structure A is a model of T = Cn(Σ) iff |PA| ≥ ω
and |¬PA| ≥ ω. It follows that T has no finite models and is ω-categorical, hence
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is complete; but T is not κ-categorical for any uncountable κ. For example, T has
exactly three non-isomorphic models of cardinality ω1.

(4) Lnl= {cn| n ∈ ω}, T = Cn(Σ) where Σ = {¬ ≡ cicj | i 6= j}. For any
L-structure A we define A0 = {cAn |n ∈ ω} and A1 = A − A0. We claim that, for
models A and B of T , A ∼= B iff |A1| = |B1|. Supposing that A,B |= T and
|A1| = |B1|, we choose some h1 mapping A1 one-to-one onto B1. We then define h
on A by h(cAn ) = cBn for all n ∈ ω, h(a) = h1(a) for all a ∈ A1. Then h : A ∼= B
since both structures are models of T . Now, for a model A of T , A1 can have
any cardinality, finite (including 0) or infinite, but |A0| = ω. It follows that T is
κ-categorical for all κ > ω but not ω-categorical.

5. Exercises

(1) Let T be a theory of L and σn ∈ SnL for all n ∈ ω. Assume that T |= (σn+1 →
σn) for all n ∈ ω, but that T 6|= (σn → σn+1) for all n ∈ ω. Prove that there is
some model A of T such that A |= σn for every n ∈ ω.

(2) Give an example of a language L (with just finitely many non-logical symbols)
and some finite set Σ ⊆ SnL such that the theory T = Cn(Σ) has models and
all models of T are infinite.

(3) Let Lnl = {R} where R is a binary relation symbol and let A = (ω,<). Let B
be such that A ≡ B but A is not isomorphic to B. Prove that there is some
infinite sequence {bn}n∈ω of elements of B which is strictly decreasing, that is
RB(bn+1, bn) holds for all n ∈ ω.

(4) Let T1 and T2 be theories of L, and assume that there is no sentence θ of L
such that T1 |= θ and T2 |= ¬θ. Prove that (T1 ∪ T2) has a model. [Warning:
(T1 ∪ T2) need not be a theory.]

(5) Let T1 and T2 be theories of L. Assume that for every L-structure A we have

A |= T1 iff A 6|= T2.

Prove that there is some sentence σ of L such that T1 = Cn(σ).
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CHAPTER 4

Some Methods in Model Theory

0. Introduction

In model theory one investigates the classes of models of (first order) theories.
The questions largely concern the “variety” of possible models of a theory, and how
different models of a theory are related. The most basic and important results of
model theory yield the existence of models of a theory with specified properties.
The Compactness and Löwenheim-Skolem theorems are both such results, and form
the basis for many important applications, some of which were covered in Chapter
3, section 4.

In sections 1 and 2 of this chapter we present further model-existence results
and some of their applications, which are pursued much further in the next chapter.
Of especial importance is the concept of a type (of elements in a model) and the
theorem on omitting types (in a model of a theory). Two natural relations of
inclusion between models are introduced in section 3 and the method of chains
(especially under elementary inclusion) to construct models is introduced.

In section 4, we introduce the “back-and-forth” method, widely used to show
two models are isomorphic. This method will also be used in the next chapter.

1. Realizing and Omitting Types

If two models are non-isomorphic, how might one recognize the fact? Certainly
if they are not elementarily equivalent or if they have different cardinalities they
are non-isomorphic. If they are elementarily equivalent of the same cardinality,
however, the question becomes harder, particularly for countable models. We have
seen two models be non-isomorphic since there was a set {ψi(x)| i ∈ I} of formulas
such that in one model there was an element simultaneously satisfying every ψi(x)
while there was no such element in the other model. In the terminology we are
about to introduce we could conclude the models were non-isomorphic since there
was a type which was realized in one model, but omitted in the other model.

Definition 1.1. (a) A type, in the variables x0, . . . , xn, is a set Γ of formulas,
with at most the variables x0, . . . , xn free. We write Γ(x0, . . . , xn) to mean that
only x0, . . . , xn occur free in Γ.

(b) Γ(x0, . . . , xn) is realized in A by a0, . . . , an ∈ A iff AA |= φ(a0, . . . , an) for
all φ(x0, . . . , xn) ∈ Γ. Γ is realized in A if it is realized in A by some a0, . . . , an ∈ A.

(c) Γ(x0, . . . , xn) is omitted in A iff Γ is not realized in A, that is, for all
a0, . . . , an ∈ A there is some φ ∈ Γ such that AA |= ¬φ(a0, . . . , an).

The connection of types with isomorphisms is contained in this easy result.

Proposition 1.1. Assume h is an isomorphism of A onto B. If a0, . . . , an
realize the type Γ(x0, . . . , xn) in A then h(a0), . . . , h(an) realize Γ in B.

61
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Proof. This is immediate from the fact that

AA |= φ(a0, . . . , an) iff BB |= φ(h(a0), . . . , h(an)).

�

Corollary 1.2. If A ∼= B then A and B realize precisely the same types.

Thus, showing that two models realize different collections of types is one way
of showing they are non-isomorphic, even if they are elementarily equivalent and
of the same cardinality. One can ask if this will always work. That is: if A ≡ B,
|A| = |B| = ω and A and B realize precisely the same types, must A ∼= B?

More generally (or, rather, more vaguely) we want to use types to investigate
the countable models of (complete) theories–how they help us distinguish between
models, etc. For example, we know that Th((ω,≤,+, ·, 0, 1)) has at least 2 non-
isomorphic countable models. Precisely how many non-isomorphic countable mod-
els does this theory have? We will be able to answer this question exactly by looking
at the types realized in models of this theory.

The two questions we want to attack immediately are: when does a theory T
have a model realizing (omitting) a type Γ?

If Γ(x0, . . . , xn) is finite, say Γ = {φ0(~x), . . . , φk(~x)}, then obviously A realizes
Γ iff A |= ∃x0 · · · ∃xn(φ0 ∧ · · · ∧ φn). Thus T has a model realizing this finite Γ iff
T ∪ {∃x0 · · · ∃xn(φ0 ∧ · · · ∧ φn)} is consistent. We will normally say simply that
T ∪ {φ0, . . . , φk} is consistent , or {φ0 . . . , φn} is consistent with T .

If Γ(x0, . . . , xn) is an infinite set of formulas we cannot write down a sentence
saying that Γ is realized. At the very least, if Γ is realized on some model of T then
every finite Γ0 ⊆ Γ is consistent with T . We will also say Γ is consistent with T ,
or Γ is finitely satisfiable in T , to mean that every finite Γ0 ⊆ Γ is consistent with
T , or equivalently, every finite Γ0 ⊆ Γ is realized in some model of T . A simple
compactness argument yields the following:

Theorem 1.3. T has a model realizing Γ(x0, . . . , xn) iff Γ is finitely satisfiable
in T .

Proof. We only need to show the implication from right to left. First let
L′ = L ∪ {c0, . . . , cn} where c0, . . . , cn are new constants. Let

Σ = T ∪ {φ(c0, . . . , cn)| φ ∈ Γ}.
If A′ |= Σ then A′ � L is a model of T realizing Γ. We show Σ has a model by
compactness. Let Σ0 ⊆ Σ be finite. Then

Σ0 ⊆ T ∪ {φ(c0, . . . , cn)| φ ∈ Γ0}
for some finite Γ0 ⊆ Γ. By assumption, T has some model A in which Γ0 is realized,
say by a0, . . . , an ∈ A. Let A′ be the expansion of A to L′ such that cA

′

i = ai. Then
A′ |= Σ0. �

Warning : This result does not say that a (fixed) model A realizes Γ provided
every finite subset of Γ is realized by A. This is certainly false, as easy examples
show.

As a consequence of the Löwenheim-Skolem Theorem applied to the set Σ in
the preceding proof we obtain:

Corollary 1.4. If T has an infinite model realizing Γ, then T has a model of
cardinality κ realizing Γ for each κ ≥ |L|.
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As an example of the use of types we have the following:

Example 1.1. Let T = Th((Z,≤)) and let Γ(x, y) = {φn(x, y)| n ∈ ω}, where
φn(x, y) says “x < y and there are at least n elements between x and y.” Then Γ
is omitted in (Z,≤) but every finite Γ0 ⊆ Γ is realized in (Z,≤), hence Γ is realized
in some countable model A of T , which must then not be isomorphic to (Z,≤).

Let us turn to the question of when a theory T has a model omitting Γ. The
way to approach this question is to look at the negation and ask instead when every
model of T realizes Γ. One will then be led to the following concept:

Definition 1.2. T locally realizes Γ(x0, . . . , xn) iff there is some formula
θ(x0, . . . , xn) consistent with T such that

T |= ∀x0 · · · ∀xn(θ → φ)

for all φ ∈ Γ.

We can easily see:

Proposition 1.5. Assume T is complete. If T locally realizes Γ then every
model of T realizes Γ.

Proof. Let A |= T . Since T is complete and θ is consistent with T , we must
have A |= ∃x0 · · · ∃xnθ. If AA |= θ(a0, . . . , an) then a0, . . . , an will realize Γ in
A. �

Our goal is to obtain the converse of the preceding proposition. We will not
need the assumption that T is complete, but we will need to assume that our
language is countable. The fact that we do not know any good criterion for a
theory in an uncountable language to have a model omitting a type is one of the
primary difficulties in a satisfactory development of the model theory of uncountable
languages, and also accounts for many of the problems in dealing with uncountable
models even for countable languages.

Definition 1.3. T locally omits Γ(x0, . . . , xn) iff T does not locally realize
Γ, that is, iff for every formula θ(x0, . . . , xn) consistent with T there is some
φ(x0, . . . , xn) ∈ Γ such that (θ ∧ ¬φ) is consistent with T .

The theorem we are after is the following fundamental result:

Theorem 1.6. (Omitting Types Theorem) Assume Lis countable. Assume
that T is consistent and that T locally omits Γ(x0, . . . , xn). Then T has a countable
model which omits Γ.

Our proof of this result will be via the Henkin method and follow closely the
proof of the completeness theorem. That is, we will expand our language by adding
new individual constant symbols and expand T to a Henkin Set in the new language.
This expansion will be done in such a way that the canonical model of the resulting
Henkin set will omit the type Γ.

One point needs to be considered first–the definitions of locally omit and locally
realize depend on the language that the formula θ(x0, . . . , xn) is allowed to come
from. Just because T locally omits Γ in L (i.e. considering just θ’s in L) is no
guarantee that it still does so in a larger language L′ (i.e. allowing θ’s in L′). The
following lemma says that we can add constants to our language without harming
things, and furthermore we can add finitely many axioms (in the new language) to
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T and still have Γ be locally omitted. This is the essential fact needed to build up
our Henkin Set.

Lemma 1.7. Assume that T locally omits Γ(x0, . . . , xn). Let L′ ⊇ L add only
individual constant symbols to L. Let Σ′ = T ∪ {ψ1, . . . , ψk} be consistent, where
ψi ∈ SnL′ . Then Σ′ locally omits Γ (in L′).

Proof. Let θ′(x0, . . . , xn) of L′ be consistent with Σ′. Let c0, . . . , cm list all
constants of L′ −L occurring in any of θ′, ψ1, . . . , psik. Let y0, . . . , ym be variables
not occurring in any of θ′, ψ1, . . . , ψk. Thus

χ(x0, . . . , xn, y0, . . . , ym) = (θ′ ∧ ψ1 ∧ · · · ∧ ψk)c0,...,cmy0,...,ym

is a formula of L, and χ is consistent with T . Finally, let

θ(x0, . . . , xn) = ∃y0 · · · ∃ymχ.
Then θ is also consistent with T , hence there is some φ ∈ Γ such that (θ∧¬φ) is con-
sistent with T . Therefore (χ∧¬φ) is consistent with T , hence χ(x0, . . . , xn, c0, . . . , cm)∧
φ is consistent with T , i.e. (θ′ ∧ψ1 ∧ · · · ∧ψk ∧¬φ) is consistent with T , which says
precisely that (θ′ ∧ ¬φ) is consistent with Σ′. �

Having this lemma we can now proceed to prove the Omitting Types Theorem.

Proof. Let L∗ = L∪C0, where C0 is a set of new individual constant symbols
with |C0| = ω. Then T is still consistent and still locally omits Γ in L∗. For
simplicity in notation we assume that Γ has just one free variable, so Γ is Γ(x). We
will extent T to a Henkin Set Σ∗ of L∗ such that the following holds:

(3) for every constant c of L∗ there is some φ(x) ∈ Γ such that ¬φ(c) ∈ Σ∗.
If A∗ is the canonical model of a Σ∗ satisfying (3), then for every a ∈ A∗,

a = cA
∗

for some c, hence A∗A∗ |= ¬φ(a)–i.e. A∗ omits Γ(x).
Let {σn| n ∈ ω} be a listing of all the sentences of L∗, and let {cn| n ∈ ω} list

all constant symbols of L∗. We define recursively a set Σn of sentences of L∗ such
that Σ0 = T and for each n ∈ ω we have:

(0n) Σn ⊆ Σn+1 and Σn+1 is consistent,
( 1

2n) Σn+1 − Σn is finite,
(1n) σn ∈ Σn+1 or ¬σn ∈ Σn+1,
(2n) if σn /∈ Σn+1 and σn = ∀xφ(x) for some φ(x), then ¬φ(c) ∈ Σn+1 for some

c,
(3n) ¬φ(cn) ∈ Σn+1 for some φ(x) ∈ Γ.
We pass from Σn to Σn+1 in three steps: first we obtain Σn+ 1

2
so that σn ∈

Σn+ 1
2

or ¬σn ∈ Σn+ 1
2
; then we obtain Σn+ 3

4
such that ¬φ(c) ∈ Σn+ 3

4
for some c,

provided σn = ∀xφ(x) /∈ Σn+ 1
2
–these are just as in the proof of the Completeness

Theorem.
Given Σn+ 3

4
–a finite, consistent extension of T–we know by the lemma that

Σn+ 3
4

locally omits Γ(x), in L∗. Look at the consistent formula θ(x) = x ≡ cn.

There must be some φ(x) in Γ such that x ≡ cn ∧ ¬φ(x) is consistent with Σn+ 3
4
.

Therefore we define Σn+1 = Σn+ 3
4
∪ {¬φ(cn)}, and this is as desired.

Σ∗ =
⋃
n∈ω Σn is the desired Henkin set, whose existence completes the proof.

�

Corollary 1.8. Let T be a complete theory in a countable language. The
following are equivalent:
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(i) T has a model omitting Γ(x1, . . . , xn),
(ii) T has a countable model omitting Γ,
(iii) T locally omits Γ.

Even if T is not complete, (i) is equivalent to (ii), but (ii)⇒(iii) fails.
The most natural examples of types consistent with a theory T are the sets of

formulas satisfied by a fixed tuple of elements in a fixed model of T . These types
are also “maximal.”

Definition 1.4. (1) Given a model A and a0, . . . , an ∈ A, the (complete) type
of a0, . . . , an ∈ A is

tpA(a0, . . . , an) = {φ(x0, . . . , xn)| AA |= φ(a0, . . . , an)}.
(2) A type Γ(x0, . . . , xn) is a complete type (of T ) iff Γ is realized on some model
(of T ) and for every φ(x0, . . . , xn) either φ ∈ Γ or ¬φ ∈ Γ.

Lemma 1.9. Γ(x0, . . . , xn) is a complete type of T iff Γ = tpA(a0, . . . , an) for
some A |= T and a0, . . . , an ∈ A.

A consequence of the realizing types theorem is the following:

Corollary 1.10. If Γ(x0, . . . , xn) is consistent with T then there is some
complete type Γ∗(x0, . . . , xn) of T with Γ ⊆ Γ∗.

We will sometimes say that Γ(x0, . . . , xn) generates a complete type of T to
mean that Γ is contained in exactly one complete type Γ∗(x0, . . . , xn) of T–i.e.
whenever A,B |= T , a0, . . . , an realize Γ in A, and b0, . . . , bn realize Γ in B then
tpA(a0, . . . , an) = tpB(b0, . . . , bn).

Just as the sets of sentences one normally writes down do not usually axiomatize
complete theories, so the types one writes down do not usually generate complete
types. For example, let T = Th((ω,≤,+, ·, 0, 1)) and let Γ0(x) = {n < x| n ∈ ω}.
Then Γ0 is realized on all models of T which are not isomorphic to N = (ω,≤
,+, ·, 0, 1). The elements of any A |= T which realize Γ0(x) are “infinite”, i.e.
have infinitely many elements of A less than them. But Γ0(x) does not generate a
complete type since it does not decide for example whether or not “p | x” should
hold (for primes p ∈ ω). In fact any way of adding “p | x” or “¬p | x” for any
primes p ∈ ω leads to a consistent type extending Γ0(x).

Let P be the set of prime numbers in ω. Let X ⊆ P. We define the type

ΓX(x) = Γ0(x) ∪ {p | x| p ∈ X} ∪ {p 6| x| p ∈ P−X}.
Then each ΓX is a consistent type with T . Although ΓX does not generate a
complete type, we can say that the same complete type cannot contain both ΓX
and ΓY , for instance X 6= Y , both subsets of P. Thus–there are 2ω different
complete types in x consistent with T . An element of a model realizes exactly one
complete type, hence a countable model can realize just countably many complete
types. Since every type consistent with T is realized on some countable model of T
we can conclude that T has (at least) 2ω non-isomorphic countable models. In fact
an elementary lemma shows that there are at most 2ω non-isomorphic countable
models for any countable language L–just count the number of different models
with universe = ω. We thus have:

Proposition 1.11. T = Th(N) has precisely 2ω non-isomorphic countable
models.
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In applications (as in the next chapter) we frequently need to realize or omit
an infinite number of types simultaneously. The relevant results are as follows:

Theorem 1.12. Let T be a complete theory (in a countable L). Assume each
type Γk(x0, . . . , xnk) is consistent with T , k ∈ ω. Then T has a (countable) model
realizing every Γk, k ∈ ω.

Theorem 1.13. (Extended Omitting Types Theorem) Let T be a theory
in a countable L. Assume that T locally omits each type Γk(x0, . . . , xnk). Then T
has a countable model which omits every Γk, k ∈ ω.

2. Elementary Extensions and Chains

To discuss how two different models of a theory “compare” on frequently wants
to talk about one model being included in another. We have two notions of inclu-
sion, one of which is the straightforward analogue of a subalgebra (as subgroup).

Definition 2.1. A is a submodel of B (or B is an extension of A), written
A ⊆ B, iff A ⊆ B and the interpretations in A of the nonlogical symbols are just
the restrictions to A of their interpretations in B, that is:

cA = cB for any constant of L;
FA(a1, . . . , am) = FB(a1, . . . , am) for all a1, . . . , am ∈ A and every function

symbol F of L;
RA(a1, . . . , am) holds iff RB(a1, . . . , am) holds, for all a1, . . . , am ∈ A and every

relation symbol R of L.

A submodel of B is uniquely determined by its universe, and there is a simple
test for checking whether a subset of B is the universe of a submodel.

Lemma 2.1. (1) If A1,A2 ⊆ B, A1 = A2 then A1 = A2. (2) X ⊆ B is the
universe of a submodel of B iff X 6= ∅, cB ∈ X for all constants c of L, and
FB(a1, . . . , am) ∈ X for all a1, . . . , am ∈ X and every function symbol F of L.

Example 2.1. Here are examples of chains of submodels:

(1) ({0, 3}, {(0, 0), (0, 3), (3, 3)}) ⊆ (ω,≤) ⊆ (Z,≤) ⊆ (Q,≤) ⊆ (R,≤)
(2) (ω,+) ⊆ (Z,+)

Clearly as the above examples can be used to show, A ⊆ B, B |= T need not
imply A |= T . A more serious problem from our point of view is shown by the
following example:

Example 2.2. Let B = (ω,≤),A = (A,≤) where A = {2k + 1| k ∈ ω}. Then
A ⊆ B by definition. Further A ≡ B (since A ∼= B). If we let φ0(x) be ∀y(x ≤ y),
which defines the first element in the ordering, then BB |= φ0(0) ∧ ¬φ0(1). Now
0 /∈ A and in fact AA |= φ0(1). That is: the element 1 which belongs to both
universes, satisfies a formula in one model which it does not satisfy in the other
model. This is an undersirable property, and our second concept of extension is
designed precisely to avoid it.

Definition 2.2. A is an elementary submodel of B (B is an elementary ex-
tension of A), written A ≺ B, iff A ⊆ B and for every formula φ(x0, . . . , xn) of
Land every a0, . . . , an ∈ A we have AA |= φ(a0, . . . , an) iff BA |= φ(a0, . . . , an).
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Clearly, A ≺ B ⇒ A ≡ B but the above example shows that A ≡ B, A ⊆ B
does not imply that A ≺ B.

Combining submodel with isomorphism yields two hybrid notions:

Definition 2.3. (1)A ∼=⊆ B (A is embeddable in B) means A ∼= A′ ⊆ B for
some A′. (2) A ∼=≺ B (A is elementarily embeddable in B) means A ∼= A′ ≺ B for
some A′.

The next lemma enables us to “reverse the order” of isomorphism and inclusion
in the previous definitions. It is important because in trying to show that A has
an elementary extension with a certain property, our methods yield a model into
which A can be elementarily embedded first of all.

Lemma 2.2. (1) A ∼=⊆ B iff A ⊆ B′ ∼= B for some B′. (2) A ∼=≺ B iff
A ≺ B′ ∼= B for some B′.

Proof. From right to left is clear, so assume h : A ∼= A′ where A′ ⊆ B. Let B0

be such that A∩B0 = ∅ and |B0| = |B−A′|, say h0 : B0
∼= B−A′. Let B′ = A∪B0

and interpret the symbols of Lon B′ so that g = h ∪ h0 is an isomorphism of B′

onto B. Since h is an isomorphism of A onto A′, we will automatically have A ⊆ B′

(A ≺ B′ for (2)). �

Extensions and elementary extensions of A can be characterized by sets of
sentences of L(A).

Definition 2.4. (1) A basic formula is a formula which is either atomic or the
negation of an atomic formula. (2) The (basic) diagram of A is the set

∆A = {β| β is a basic sentence of L(A) s.t. AA |= β}.

Lemma 2.3. (1) A ⊆ B iff BA |= ∆A. (2) A ≺ B iff BA ≡ AA, i.e. BA |=
Th(AA).

The lemma is immediate from the definitions. Th(AA) is sometimes called the
elementary diagram of A.

Of course, ∆A and Th(AA) can have models in which the constant a is not
interpreted as the element a of A. Tese other models turn out to be precisely the
models into which A can be embedded or elementarily embedded. In the first case
this is quite clear.

Lemma 2.4. B (an L-structure ) can be expanded to a model B∗ of ∆A iff A
is embeddable in B.

Proof. If h : A ∼= A′ where A′ ⊆ B then defining B∗ for L(A) by setting

aB
∗

= h(a) yields a model of ∆A. Conversely, if B∗ |= ∆A then defining h(a) =

aB
∗

yields an isomorphism of A onto the submodel A′ ⊆ B whose universe is
A′ = {aB

∗
}. �

The corresponding result for elementary embedding is less obvious, because
the requirement that A′ ≺ B involves satisfiability in A′ rather than just B. It is
convenient to have a lemma which tells us when a submodel of B is an elementary
submodel which refers only to satisfiability in B.

Lemma 2.5. Let A ⊆ B. Then A ≺ B iff for every φ(x1, . . . , xn, y) of Land
all a1, . . . , an ∈ A, if BA |= ∃yφ(a1, . . . , an, y) then there is some b ∈ A such that
BA |= φ(a1, . . . , an, b).
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Proof. We show by induction on formulas ψ(x1, . . . , xn) of Lthat for all
a1, . . . , an ∈ A AA |= ψ(a1, . . . , an) iff BA |= ψ(a1, . . . , an). All steps are clear
except for the quantifiers. So assume φ(x1, . . . , xn, y) satisfies the inductive hy-
pothesis and consider ψ(x1, . . . , xn) = ∃yφ. If AA |= ψ(a1, . . . , an) then AA |=
φ(a1, . . . , an, b) for some b ∈ A, hence BA |= φ(a1, . . . , an, b) and so BA |= ψ(a1, . . . , an).
Conversely, if AA |= ψ(a1, . . . , an) then the hypothesis of the lemma yields BA |=
φ(a1, . . . , an, b) for some b ∈ A, so AA |= φ(a1, . . . , an, b) and AA |= ψ(a1, . . . , an).

�

With the lemma it is now easy to prove the characterization of the models into
which A is elementarily embeddable.

Proposition 2.6. A is elementarily embeddable in B iff B can be expanded to
a model B∗ of Th(AA).

Proof. We need just to prove the direction from right to left. If B∗ |=
Th(AA) then we define, as before, A′ to be the submodel of B with universe

A′ = {aB
∗
| a ∈ A}. Then A ∼= A′, so it remains to show A′ ≺ B, for which

we use the lemma. Given φ(x1, . . . , xn, y) of Land a′1, . . . , a
′
n ∈ A′, suppose BA′ |=

∃yφ(x1, . . . , xn, y). Well, a′i = aB
∗

i for ai ∈ A, so B∗ |= ∃yφ(a1, . . . , an, y). There-

fore AA |= ∃yφ(a1, . . . , an, y), so AA |= φ(a1, . . . , an, b) for some b ∈ A. Therefore

B∗ |= φ(a1, . . . , an, b), i.e. BA′ |= φ(a′1, . . . , a
′
n, b
′) where b′ = b

B∗ ∈ A′. �

In this proof, the models B∗ and BA′ are different, since they are for different

languages, but the correspondence a↔ (aB
∗
) sets up a “translation” between them.

Intuitively, an elementary extension of A is just like A but larger, that is, has
more elements and (perhaps) more types of elements. The following is easy from
the definition.

Lemma 2.7. Assume A ≺ B. Then B realizes every type realized in A.

Proof. If a0, . . . , an ∈ A realize Γ(x0, . . . , xn) in A then they also realize
Γ(x0, . . . , xn) in B since A ≺ B. �

More importantly, we can now realize types in elementary extensions of given
models.

Theorem 2.8. Assume Γ(x0, . . . , xn) is consistent with Th(A). Then there is
some B such that A ≺ B and B realizes Γ.

Proof. Let L∗ = L(A) ∪ {c0, . . . , cn}, where c0, . . . , cn are constants not in
L(A). Let

Σ = Th(AA) ∪ {φ(c0, . . . , cn)| φ ∈ Γ}.
If B∗ |= Σ then A is elementarily embeddable in B′ = B∗ �L which realizes Γ. By
Lemma 4.3.2, we obtain B such that A ≺ B and B ∼= B′, so B also realizes Γ. To
show Σ has a model we use compactness. If Σ0 ⊆ Σ is finite, then

Σ0 ⊆ Th(AA) ∪ {φ(c0, . . . , cn)| φ ∈ Γ0}
for some finite Γ0 ⊆ Γ. The hypothesis yields a∗0, . . . , a

∗
n ∈ A such that (AA, a

∗
0, . . . , a

∗
n) |=

Σ0. �

Elementary embeddings give us a precise way to say that (ω,≤) is the smallest
model of its complete theory.



3. THE BACK-AND-FORTH METHOD 69

Proposition 2.9. Let T = Th((ω,≤)) and let B |= T . Then (ω,≤) ∼=≺ B.

Proof. For each n ∈ ω there is a formula φn(x) which defines {n} in (ω,≤).
Therefore T |= ∃xφn(x) for each n ∈ ω, and since B |= T we must have BB |=
φn(bn) for bn ∈ B, for each n ∈ ω. Let B∗ = (B, bn)n∈ω be the expansion of B
to L(ω) in which n is interpreted by bn. We claim that B∗ |= Th((ω,≤)ω). Let
ψ(x0, . . . , xk) of Lbe given and suppose (ω,≤)ω |= ψ(n0, . . . , nk). Then, since φn’s
define {n}, we actually have

(ω,≤) |= ∀x0 · · · ∀xk[φn0
(x0) ∧ · · · ∧ φnk(xk)→ ψ].

Therefore this sentence is also true in B, whence it follows that B∗ |= ψ(n0, . . . , nk).
Proposition 4.3.6 thus yields the conclusion. �

Also, of course, it follows from this that a type realized on (ω,≤) is realized in
every B ≡ (ω,≤). Further, if B ≡ (ω,≤) but B 6∼= (ω,≤) then B must realize the
type {¬φn(x)| n ∈ ω}, which is omitted in (ω,≤). Thus, (ω,≤) is the only model
of T which realizes only the types which T locally realizes.

We shall also consider chains under inclusion.

Definition 2.5. Let I be linearly ordered by ≤. A family {Ai}i∈I is a chain
iff Ai ⊆ Aj whenever i, j ∈ I, i ≤ j. {Ai}i∈I is an elementary chain iff Ai ≺ Aj
whenever i, j ∈ I, i ≤ j.

Definition 2.6. Let {Ai}i∈I be a chain. The union of the chain {Ai}i∈I is the
model B defined by B =

⋃
i∈I Ai, c

B = cAi , FB(a1, . . . , am) = FAi(a1, . . . , am) if

a1, . . . , am ∈ Ai, and RB(a1, . . . , am) holds iff RAi(a1, . . . , am) holds if a1, . . . , am ∈
Ai. We write B =

⋃
i∈I Ai.

Lemma 2.10. The union B of the chain {Ai}i∈I is well defined, and Ai ⊆ B
for every i ∈ I.

Theorem 2.11. Let {Ai}i∈I be an elementary chain and B =
⋃
i∈I Ai. Then

Ai ≺ B for every i ∈ I.

Proof. We prove, by induction on φ(x0, . . . , xn), that for every i ∈ I and
for every a0, . . . , an ∈ Ai we have (Ai)Ai |= φ(a0, . . . , an) iff BAi |= φ(a0, . . . , an).
The only case of difficulty occurs when φ(~x) = ∃yψ(~x, y). Let a0, . . . , an ∈ Ai
and suppose BAi |= φ(a0, . . . , an). Then BB |= ψ(a0, . . . , an, b) for some b ∈ B–
but then b ∈ Aj for some j ∈ I, i ≤ j. So by inductive hypothesis we know
(Aj)Aj |= φ(a0, . . . , an) as desired. �

We will use this theorem to construct a model in an infinite number of steps,
each “approximating” the result.

3. The Back-and-Forth Method

If two models are isomorphic, how might one prove this? In this section, we
explain a general method which we will use, both here and in the next chapter, to
show models are isomorphic. Although this method has extensions to uncountable
models, we will restrict our attention to just countable models.

To motivate the method, consider two countable models A,B. Then we can
list the elements of both their universes, say A = {an| n ∈ ω} and B = {bn| n ∈ ω}.
To define an isomorphism, say h, of A onto B we need to specify for each n ∈ ω
an element dn ∈ B such that h(an) = dn. We must also specify for each n ∈ ω an
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element cn ∈ A such that h(cn) = bn. [Of course, each dnis some bn′ and each cn
is some an′′ but it is notationally easier to introduce new designations cn, dn.] We
want to do this in such a way that the resulting h is an isomorphism, that is for
every atomic formula φ(x0, . . . , xn) and a′0, . . . , a

′
n ∈ A

AA |= φ(a′0, . . . , a
′
n) iff BB |= φ(h(a′0), . . . , h(an)′).

Our procedure is to do this recursively–that is, knowing d0, ldots, dn−1 and c0, . . . , cn−1

we will define dn and cn. The problem is what inductive hypothesis on d0, . . . , dn−1

and c0, . . . , cn−1 will enable us to choose appropriate dn and cn? At the very least
we will need to know that the choices already made will make the piece of h al-
ready defined behave like an isomorphism–i.e. for any atomic α(x0, . . . , xk) and

a′0, . . . , a
′
k ∈ {a0, . . . , an−1, c0, . . . , cn−1} we have AA |= α(a′0, . . . , a

′
k) iff BB |=

α(h(a′0), . . . , h(a′k)). This may not be enough, however. In general we need to have
some notion of “similarity” between tuples from A and tuples from B which does
guarantee that we can continue to build up our isomorphism.

Theorem 3.1. Let A and B be countable. Assume there is some relation ∼
between n-tuples of elements of A and n-tuples of elements of B, for all n, such
that: ∀a′0, . . . , a′n−1 ∈ A ∀b′0, . . . , b′n−1 ∈ B

1) (a′0, . . . , a
′
n−1) ∼ (b′0, . . . , b

′
n−1)⇒ for all atomic α(x0, . . . , xk−1) of L, AA |=

α(a′0, . . . , a
′
n−1) iff BB |= α(b′0, . . . , b

′
n−1).

2) (a′0, . . . , a
′
n−1) ∼ (b′0, . . . , b

′
n−1)⇒ ∀a′n ∈ A∃b′n ∈ B such that (a′0, . . . , a

′
n) ∼

(b′0, . . . , b
′
n) and ∀b′n ∈ B∃a′n ∈ A such that (a′0, . . . , a

′
n) ∼ (b′0, . . . , b

′
n).

3) ∅ ∼ ∅.
Then A ∼= B, and in fact whenever (a′0, . . . , a

′
n−1) ∼ (b′0, . . . , b

′
n−1) there is

some isomorphism h of A onto B with h(a′i) = b′i for all i = 0, . . . , n− 1.

Proof. Let A = {an| n ∈ ω}, B = {bn| n ∈ ω}. We define, by recursion on n,
elements dn ∈ B, cn ∈ A such that for each n ∈ ω we have

(a0, c0, a1, c1, . . . , an, cn) ∼ (d0, b0, d1, b1, . . . , dn, cn).

This is clear, using condition 3) to start and condition 2) to continue. By condition
1) the resulting map h is an isomorphism. Given to begin with that (a′0, . . . , a

′
n−1) ∼

(b′0, . . . , b
′
n−1) we could have started with that rather than ∅ ∼ ∅ to obtain an

isomorphism taking a′i to b′i for each i = 0, . . . , n− 1. �

The trick in using this result is in coming up with a relation ∼ of similarity
which has properties 1)-3).

Example 3.1. Lnl = {≤}, Σ = the axioms for dense linear order without
endpoints. Let A,B |= Σ. Define (a0, . . . , an) ∼ (b0, . . . , bn) iff (ai ≤A aj ⇔ bi ≤B

bj all i, j = 0, . . . , n). Then 1)-3) of the theorem are satisfied, therefore A ∼= B
provided |A| = ω = |B|.

(Even in this example, one can find A,B |= Σ such that |A| = |B| 6= ω but
A 6∼= B.) Note that this example shows that T = Cn(Σ), “the theory of dense linear
order without endpoints,” is ω-categorical, hence complete by the  Loš-Vaught test.
It follows, for example, that (Q,≤) ≡ (R,≤).
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4. Exercises

(1) Let T be a complete theory of L, and let Φ(x) and Ψ(x) be complete L-types
consistent with T . Assume that every element of every model of T realizes
either Φ or Ψ. Prove that both Φ and Ψ contain complete formulas.

(2) Let L be a countable language containing (at least) the binary relation symbol
E. Let T be a consistent theory of L such that for every A |= T , EA is an
equivalence relation on A which has at least one infinite equivalence class. Prove
that there is some ϕ(x) ∈ FmL, consistent with T , such that for every A |= T
every a ∈ A which satisfies ϕ belongs to an infinite EA-equivalence class.

(3) Prove or disprove:
(a) (Q, <) has a proper elementary submodel.
(b) (Z, <) has a proper elementary submodel.

(4) (a) Let T be a complete theory of L, and let Φ(x) and Ψ(y) be types each
of which is realized on some model of T . Prove that T has some models
realizing both Φ and Ψ.

(b) Give an example to show that the result in part (a) can fail if the theory
T is not complete.

(5) Let A = (Q,+, ·, 0, 1). Prove that T = Th(A) is not ω-categorical.
(6) Let Φ(x) be a type consistent with the complete theory T but which is realized

by at most one element in every model of T . Prove that there is some formula
ψ(x) consistent with T such that

T |= ∀x(ψ(x)→ ϕ(x)) for all ϕ ∈ Φ.

(7) Let T be a complete theory of L, and let A and B be models of T . Prove that
there is some C |= T such that both A and B can be elementarily embedded in
C.

(8) (a) Assume that A ≺ B and A 6= B. Prove that there is no formula ϕ(x) of L
such that ϕB = A.

(b) Give an example of A,B and ϕ(x) where A ⊆ B,A 6= B, but ϕB = A.
(9) Let T = Th((Z, <)). Let ψ(x, y) = (x < y) ∧ ¬∃z(x < z ∧ z < y). Prove that

ψ(x, y) is a complete formula with respect to T .





CHAPTER 5

Countable Models of Complete Theories

0. Introduction

In this chapter we give detailed attention to the question of what the collection
of countable models of a complete theory T can look like. This includes consid-
eration of how many countable models (up to isomorphism) T can have, and also
how the models are related to one another, particularly by elementary embedding.
We are also interested in how the properties of the collection of countable models
of T are related to syntactical properties of T . Some particular questions we will
consider (and answer) are the following:

(1) What cardinals κ can be the number of non-isomorphic countable models
of some T? We have seen examples where κ = 1, ω, 2ω, and we know κ ≤ 2ω, so this
comes down to: (a) there are complete theories T such that T has exactly n non-
isomorphic countable models, for 2 ≤ n ∈ ω? (b) if ω < κ < 2ω is there a T with
exactly κ non-isomorphic countable models? The question in (b) is complicated by
the fact that even the existence of such a cardinal κ is independent of the axioms
of set theory. Although we will discuss this later we will not be able to solve this
question.

(2) Characterize (syntactically) the theories T with exactly one countable model,
i.e., which are ω-categorical.

(3) Does A ∼=≺ B and B ∼=≺ A imply that A ∼= B, for countable A,B?
(4) If A,B are both countable models of T must we have either A ∼=≺ B or

B ∼=≺ A?
Positive answers to both (3) and (4) would say that ∼=≺ is a linear order on

isomorphism types of countable models of T .
(5) Does every T have a smallest model, i.e. a model A such that A ∼=≺ B

for every models B of T? Must such an A be unique? (Recall that previously we
showed that (ω,≤) was such a model of T = Th((ω,≤))).

(6) Does every T have a largest countable model, B, i.e., a countable model B
such that A ∼=≺ B for every countable model A of T? Must such a B be unique
(up to isomorphism)?

In each of (5), (6) if the answer is no, one would want to characterize the
theories with such models.

(7) If A ≡ B are countable and realize the same types must A ∼= B?
Similarly, we know that A ∼=≺ B implies that B realizes every type that A

does.
(8) Does the converse hold, for countable A,B?

1. Prime Models

Throughout, T is a complete theory in a countable language.

73
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Definition 1.1. A model A of T is prime iff for every B |= T A ∼=≺ B.

In this section we will characterize prime models, characterize the complete
theories which have prime models, and show the uniqueness of the prime model of
a theory.

Suppose that A is a prime model of T . Then, obviously, A is countable. Further,
a type realized in A is realized in every model of T and thus must be locally realized
in T (by the omitting types theorem). In fact we will see that these two properties
characterize prime models.

Let Γ(x0, . . . , xn) be a complete type of T . If Γ is locally realized in T then
there is a formula α(x0, . . . , xn) consistent with T such that

T |= ∀x0 · · · ∀xn(α→ φ)

for every φ(x0, . . . , xn) ∈ Γ. Since Γ is complete we must have

α(x0, . . . , xn) ∈ Γ.

A complete type generated (with respect to T ) by a single formula is called princi-
pal , and the generating formula is a complete as in the following definition.

Definition 1.2. A formula α(x0, . . . , xn) is a complete formula (or atom) of
T iff T |= ∃x0 · · · ∃xnα, and for every φ(x0, . . . , xn) either T |= (α → φ) or T |=
(α→ ¬φ).

Definition 1.3. A model A of T is atomic iff for every a0, . . . , an ∈ A there is
some complete formula α(x0, . . . , xn) of T such that

AA |= α(a0, . . . , an).

We have essentially shown the easy half of the following characterization theo-
rem.

Theorem 1.1. Let A |= T . Then A is prime iff A is countable and atomic.

Proof. (⇒) Assume A is prime and let a0, . . . , an ∈ A. Then tpA(a0, . . . , an)
is a complete type realized in A, hence by the above argument it contains a complete
formula. Therefore A is atomic.

(⇐) Let A be countable and atomic. Let B be any model of T . We must show
that A ∼=≺ B. We will do this by a variation on the back-and-forth method. Let
A = {an| n ∈ ω}. We will define, by recursion on n, elements bn ∈ B such that for
each n we have

(A, a0, . . . , an) ≡ (B, b0, . . . , bn).

That is: (B, b0, . . . , bn) |= Th(A{a0,...,an}) in the language L ∪ {a0, . . . , an} where
ai is interpreted as bi ∈ B. It will then follow that B∗ = (B, bn)n∈ω is a model of
Th(AA), hence A ∼=≺ B as desired.

So, we first pick b0. Since A is atomic, a0 must satisfy some complete formula
α0(x0). Then BB |= α0(b0) for some b0 ∈ B. Since α0 is complete, we have
T |= ∀x0(α0(x0)→ φ(x0)), for every φ ∈ tpA(a0). Therefore BB |= φ(b0) whenever
AA |= φ(a0), so (A, a0) ≡ (B, b0) as desired. Now, given b0, . . . , dn such that
(A, a0, . . . , an) ≡ (B, b0, . . . , bn) we show how to choose bn+1. Let αn(x0, . . . , xn) be
a complete formula satisfied by a0, . . . , an and let αn+1(x0, . . . , xn+1) be a complete
formula satisfieed by a0, . . . , an+1. Then we must have

T |= ∀x0 · · · ∀xn(αn → ∃xn+1αn+1)
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since ∃xn+1αn+1 ∈ tpA(a0, . . . , an). By our inductive hypothesis we must have
BB |= αn(b0, . . . , bn), so there is some bn+1 ∈ B with BB |= αn+1(b0, . . . , bn+1).
Then as before we see that

(A, a0, . . . , an+1) ≡ (B, b0, . . . , bn+1)

which completes the proof. �

For each n = 1, 2, . . . define

Γn(x0, . . . , xn−1) = {¬α(x0, . . . , xn−1)| α is an atom}.
Then A is atomic iff for each n A omits Γn. Thus, by the preceding theorem, T
has a prime model iff it has a countable model omitting each Γn. By the extended
omitting types theorem, this happens iff T locally omits each Γn.

Definition 1.4. T is atomic (or atomistic) iff for every formula φ(x0, . . . , xn)
consistent with T there is some complete formula α(x0, . . . , xn) such that (α ∧ φ)
is consistent with T .

We leave the reader to check that T is atomistic iff T locally omits each Γn.
The preceding discussion then shows:

Theorem 1.2. T has a prime model iff T is atomic.

It is not immediately clear how restrictive the condition that T is atomic re-
ally is. There are theories that are not atomic, but most examples are specially
contrived–Th((Z,+)) is a natural example of a theory without a prime model, but
the proof uses a lot of information about this theory.

The next result gives a large class of atomic theories.

Theorem 1.3. Assume there are just countably many different complete types
consistent with T . Then T has a prime model.

Proof. For each n ∈ ω, let Φnk (x0, . . . , xn) list all non-principal complete types
in x0, . . . , xn consistent with T . Then each Φnk is locally omitted in T . So, by the
extended omitting types theorem, T has a countable model omitting every Φnk ; this
model must then be atomic, hence prime. �

Theorem 1.4. If A,B are both prime models of T then A ∼= B.

2. Universal and Saturated Models

Definition 2.1. A model A of T is countably universal iff A is countable and
whenever B is a countable model of T then B ∼=≺ A.

The following lemma is clear:

Lemma 2.1. (1) If A is a countably universal model of T then A realizes every
type consistent with T .

(2) If T has a countably universal model then there are just countably many
complete types consistent with T .

The obvious conjecture is that the converses of both parts of the lemma hold.
First note that we do have the following.

Proposition 2.2. If there are just countably many complete types consistent
with T then T has a countable model realizing every type consistent with T .
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Thus all that remains is the converse to part (1) of the lemma. In analogy with
the proof that countable atomic models are prime, we would proceed as follows: let
A (be countable and) realize every type consistent with T . Let B be an arbitrary
countable model of T , say B = {bn| n ∈ ω}. We try to define, by recursion on n,
elements an ∈ A such that for every n we have

(B, b0, . . . , bn) ≡ (A, a0, . . . , an).

For n = 0 let Γ0(x0) = tpB(b0). By hypothesis Γ0 is realized in A, say by a0, so
we have (B, b0) ≡ (A, a0). Now for n = 1 let Γ1(x0, x1) = tpB(b0, b1). Once again
there are a′0, a

′
1 ∈ A realizing Γ1(x0, x1), hence such that (B, b′0, b

′
1) ≡ (A, a′0, a

′
1).

But we have already chosen a0 so we need an a1 such that (a0, a1) realize Γ1.
There is no obvious reason why such an a1 should exist. We are thus forced into
the formulating of the following stronger property:

Definition 2.2. A is ω-saturated iff for every n ∈ ω and all a0, . . . , an−1 ∈ A,
the structure (A, a0, . . . , an−1) [for the language L(a0, . . . , an) = L∪ {a0, . . . , an−1]
realizes every L(a0, . . . , an)-type Γ(y) consistent with it.

If A is countable and ω-saturated, we may also say that A is countably saturated.
The above argument can be carried out for ω-saturated models, so we obtain the
following theorem.

Theorem 2.3. Assume A is an ω-saturated model of T . Then every countable
model of T can be elementarily embedded in A. Therefore A is countably universal
provided A is countable.

We thus have (i)⇒(ii)⇒(iii), where:
(i) A is countably saturated
(ii) A is countably universal

(iii) A is countable and realizes all types consistent with T .
Do either, or both, of these arrows reverse? We cannot answer these questions

at the moment, but we can show that the existence of a countable ω-saturated
model is equivalent to the existence of the other two types of models.

Theorem 2.4. The following are equivalent:
(i) T has a countable ω-saturated model

(ii) T has a countable universal model
(iii) There are just countably many complete types consistent with T .

Proof. It suffices to show (iii)⇒(i). Assume that (iii) holds. Then in fact, we
have the following:

(†) for every A |= T , every n ∈ ω and every a0, . . . , an−1 ∈ A there are just
countably many different complete 1-types Γ(y) of L ∪ {a0, . . . , an−1} consistent
with Th((A, a0, . . . , an−1)).

The reason for this is that every such Γ(y) is Φ(a0, . . . , an−1, y) for some com-
plete L-type Φ(x0, . . . , xn−1, y) consistent with Th(A) = T , and (iii) asserts there
are just countably many such Φ.

(‡) for every countable A |= T there is some countable A′ such that A ≺ A′

and for every n ∈ ω and every a0, . . . , an ∈ A, A′ realizes every type Γ(y) of
L ∪ {a0, . . . , an} consistent with Th(A, a0, . . . , an).

This holds by applying Theorem 4.2.8 to the theory T ∗ = Th(AA) where the
Γk’s list the complete 1-types in just finitely many new constants–the list being
countable since A is countable and by (†).
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We now can show T has a countable ω-saturated model. Let A0 be any count-
able model of T an, for every n ∈ ω, let An+1 = (An)′ be the model given by
(‡) starting with An. Thus {An}n∈ω is an elementary chain of countable models.
Let A =

⋃
n∈ω An. Then A is a countable model of T , which can be shown to be

ω-saturated, since every finite subset of A is a finite subset of some An, hence the
types over that finite subset are all realized in An+1, so in particular in A. �

If T has uncountably many complete types, then we no longer get countable
ω-saturated models but similar arguments show:

Proposition 2.5. T has ω-saturated models of power κ for every κ ≥ 2ω.

Definition 2.3. A is ω-homogeneous iff for every n ∈ ω and every a0, . . . , an
and b0, . . . , bn ∈ A

if (A, a0, . . . , an) ≡ (A, b0, . . . , bn) then (A, a0, . . . , an) ∼= (A, b0, . . . , bn).

Theorem 2.6. A countable model is ω-saturated iff it is both ω-homogeneous
and universal.

3. Theories with Just Finitely Many Countable Models

Definition 3.1. A model A of T is countably universal iff A is countable and
whenever B is a countable model of T then B ∼=≺ A.

The following lemma is clear:

Lemma 3.1. (1) If A is a countably universal model of T then A realizes every
type consistent with T .

(2) If T has a countably universal model then there are just countably many
complete types consistent with T .

The obvious conjecture is that the converses of both parts of the lemma hold.
First note that we do have the following.

Proposition 3.2. If there are just countably many complete types consistent
with T then T has a countable model realizing every type consistent with T .

Thus all that remains is the converse to part (1) of the lemma. In analogy with
the proof that countable atomic models are prime, we would proceed as follows: let
A (be countable and) realize every type consistent with T . Let B be an arbitrary
countable model of T , say B = {bn| n ∈ ω}. We try to define, by recursion on n,
elements an ∈ A such that for every n we have

(B, b0, . . . , bn) ≡ (A, a0, . . . , an).

For n = 0 let Γ0(x0) = tpB(b0). By hypothesis Γ0 is realized in A, say by a0, so
we have (B, b0) ≡ (A, a0). Now for n = 1 let Γ1(x0, x1) = tpB(b0, b1). Once again
there are a′0, a

′
1 ∈ A realizing Γ1(x0, x1), hence such that (B, b′0, b

′
1) ≡ (A, a′0, a

′
1).

But we have already chosen a0 so we need an a1 such that (a0, a1) realize Γ1.
There is no obvious reason why such an a1 should exist. We are thus forced into
the formulating of the following stronger property:

Definition 3.2. A is ω-saturated iff for every n ∈ ω and all a0, . . . , an−1 ∈ A,
the structure (A, a0, . . . , an−1) [for the language L(a0, . . . , an) = L∪ {a0, . . . , an−1]
realizes every L(a0, . . . , an)-type Γ(y) consistent with it.
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If A is countable and ω-saturated, we may also say that A is countably saturated.
The above argument can be carried out for ω-saturated models, so we obtain the
following theorem.

Theorem 3.3. Assume A is an ω-saturated model of T . Then every countable
model of T can be elementarily embedded in A. Therefore A is countably universal
provided A is countable.

We thus have (i)⇒(ii)⇒(iii), where:
(i) A is countably saturated
(ii) A is countably universal

(iii) A is countable and realizes all types consistent with T .
Do either, or both, of these arrows reverse? We cannot answer these questions

at the moment, but we can show that the existence of a countable ω-saturated
model is equivalent to the existence of the other two types of models.

Theorem 3.4. The following are equivalent:
(i) T has a countable ω-saturated model

(ii) T has a countable universal model
(iii) There are just countably many complete types consistent with T .

Proof. It suffices to show (iii)⇒(i). Assume that (iii) holds. Then in fact, we
have the following:

(†) for every A |= T , every n ∈ ω and every a0, . . . , an−1 ∈ A there are just
countably many different complete 1-types Γ(y) of L ∪ {a0, . . . , an−1} consistent
with Th((A, a0, . . . , an−1)).

The reason for this is that every such Γ(y) is Φ(a0, . . . , an−1, y) for some com-
plete L-type Φ(x0, . . . , xn−1, y) consistent with Th(A) = T , and (iii) asserts there
are just countably many such Φ.

(‡) for every countable A |= T there is some countable A′ such that A ≺ A′

and for every n ∈ ω and every a0, . . . , an ∈ A, A′ realizes every type Γ(y) of
L ∪ {a0, . . . , an} consistent with Th(A, a0, . . . , an).

This holds by applying Theorem 4.2.8 to the theory T ∗ = Th(AA) where the
Γk’s list the complete 1-types in just finitely many new constants–the list being
countable since A is countable and by (†).

We now can show T has a countable ω-saturated model. Let A0 be any count-
able model of T an, for every n ∈ ω, let An+1 = (An)′ be the model given by
(‡) starting with An. Thus {An}n∈ω is an elementary chain of countable models.
Let A =

⋃
n∈ω An. Then A is a countable model of T , which can be shown to be

ω-saturated, since every finite subset of A is a finite subset of some An, hence the
types over that finite subset are all realized in An+1, so in particular in A. �

If T has uncountably many complete types, then we no longer get countable
ω-saturated models but similar arguments show:

Proposition 3.5. T has ω-saturated models of power κ for every κ ≥ 2ω.

Definition 3.3. A is ω-homogeneous iff for every n ∈ ω and every a0, . . . , an
and b0, . . . , bn ∈ A

if (A, a0, . . . , an) ≡ (A, b0, . . . , bn) then (A, a0, . . . , an) ∼= (A, b0, . . . , bn).

Theorem 3.6. A countable model is ω-saturated iff it is both ω-homogeneous
and universal.
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CHAPTER 6

Further Topics in Model Theory

0. Introduction

In this chapter we cover a number of additional topics needed for further work
in model theory. Proofs are only given in outline, with the reader left to fill in the
details. We begin with another application of the Henkin method, to prove Craig’s
interpolation Theorem, a fundamental property of first-order theories. From it we
derive the definability result of Beth. In 6.2 we define the κ-saturated models,
for arbitrary κ, generalizing the results in 5.2. Skolem functions are introduced in
6.3 and used to derive stronger forms of the Löwenheim-Skolem theorem. We also
introduce the notion of indiscernible sequence, although our proof of the existence
of such sequences is even sketchier than usual and will depend on a combinatorial
theorem which we will not prove. Various applications are briefly discussed in 6.4,
including preservation theorems, model-completeness and 2-cardinal theorems. We
also exhibit a finite axiomatization of Th(〈ω,≤〉) and study the countable models
of this theory which provide counterexamples to the conjectures of the previous
chapter.

1. Interpolation and Definability

Let L1 and L2 be two languages, let L = L1∩L2, and let σ1, σ2 be sentences of
L1,L2 respectively. Suppose that |= (σ1 → σ2) — that is, whenever A is a structure
for (L1 ∪ L2) and A |= σ1 then A |= σ2. Now A |= σ1 iff A �L1 |= σ1, so if we take
any A′ with A′ �L1 = A �L1 we will still have A′ |= σ1, and so A′ |= σ2 (despite
the fact that A′ � L2 6= A � L2). Similarly, if A′′ is such that A′′ � L2 = A′ � L2

then we still have A′′ |= σ2. That is, we have shown the following: if A |= σ1 and
A′′ � L = A � L then A′′ |= σ2. It is reasonable to expect, then, that the validity
of the implication depends just on the language L. This is in fact true, and is the
content of Craig’s well-known theorem.

Theorem 1.1. (Interpolation) Let L = L1 ∩ L2, σ1 ∈ SnL1
, σ2 ∈ SnL2

.
Suppose that |= (σ1 → σ2). Then there is some sentence θ of L such that

|= (σ1 → θ) and |= θ → σ2.

Proof. First note that we may assume that L1 and L2 are both countable
(since only finitely many symbols can occur in σ1 and σ2).

We may assume that there is no sentence θ of L such that |= (σ1 → θ) and
|= (θ → σ2), or, equivalently, there is no sentence θ of L such that σ1 |= θ and
¬σ2 |= ¬θ. We will show that {σ1,¬σ2} has a model and so 6|= (σ1 → σ2).

Let C0 be a countably infinite set of individual constant symbols not in L1∪L2.
Let L∗,L∗1,L∗2 be the results of adding the constants in C0 to L,L1,L2 respectively.

81
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We will prove that there is a Henkin set Σ∗1 of L∗1-sentences and a Henkin set
Σ∗2 of L∗2-sentences such that σ1 ∈ Σ∗1, ¬σ2 ∈ Σ∗2 and (†) for every sentence θ of L∗,
θ ∈ Σ∗1 iff θ ∈ Σ∗2.

Once we have done this, let A1 be an L∗1-structure which is a canonical model
for Σ∗1, and let A2 be an L∗2-structure which is a canonical model for Σ∗2. Then
A1 �L∗ ∼= A2 �L∗ by (†), say under the isomorphism h. We can then expand A1 to
an (L∗1 ∪L∗2)-structure A so that h is an isomorphism of A1 �L∗2 onto A2. Therefore
A is a model of Σ∗1 ∪ Σ∗2, in particular of {σ1,¬σ2} as desired.

Thus we are done once we have defined Henkin sets Σ∗1,Σ
∗
2 as above. This we

do by carrying out the Henkin construction simultaneously starting with Σ1 = {σ1}
and Σ2 = {¬σ2}, with an added joint condition to guarantee that we end up with
(†) holding.

Let SnL∗1 = {θ1
n : n ∈ ω} and SnL∗2 = {θ2

n : n ∈ ω}. We define, by recursion on

n, sets Γ1
n ⊆ SnL∗1 and Γ2

n ⊆ SnL∗2 starting with Γi0 = Σi (i = 1, 2) and such that
the following hold for all n ∈ ω and i = 1, 2:

(0in) Γin ⊆ Γin+1 and Γin+1 r Γin is finite,

(1in) θin ∈ Γin+1 or ¬θin ∈ Γin+1,

(2in) if θin 6∈ Γin+1 and θin = ∀xϕ(x) for some ϕ(x), then ¬ϕ(c) ∈ Γin+1 for some
constant c,

and the following joint condition
(3n) there is no sentence θ of L∗ such that Γ∗n+1 |= θ and Γ2

n+1 |= ¬θ.
Note that (3n) implies that both Γ1

n+1 and Γ2
n+1 are consistent. Further (3n)

for all n guarantees that (†) holds for Σ∗i =
⋃
n∈ω Γin, and thus we are done once

we show the construction can be carried out.
First of all, note that our beginning assumption is that there is no sentence

θ of L such that Γi0 |= θ and Γ2
0 |= ¬θ. Since Γi0 do not contain constants from

C0 we see that there is no sentence θ of L∗ such that Γi0 |= θ∗ and Γ2
0 |= ¬θ∗ (by

generalization on constants). [We refer to this as (3−1)]
So, given Γin, finite sets of sentences of L∗i satisfying (3n−1), we wish to define

Γin+1 satisfying (0in), (1in), (2in) and (3n). We follow the proof of the corresponding
steps in the Completeness Theorem (pp 50-51) to define in turn Γ1

n+1/2,Γ
1
n+1,Γ

2
n+1/2,Γ

2
n+1

where the requirements that each of these sets is consistent is replaced by the
stronger requirements leading to (3n) — that is, that there is no sentence θ of L∗
such that

(a) Γ1
n+1/2 |= θ and Γ2

n |= ¬θ,
(b) Γ1

n+1 |= θ and Γ2
n |= ¬θ,

(c) Γ1
n+1 |= θ and Γ2

n+1/2 |= ¬θ, and finally (3n) itself.

Obviously, the hypothesis that (3n−1) holds is used to start. All the sets are
then similar to those of the Completeness Theorem, and are left to the reader.

�

Interpolation also holds for formulas with free variables in place of sentences
σ1, σ2. To see this, replace the preceding Theorem to obtain an interpolating θ′ with
these new constants, and replace the constants with the variable to get a formula
θ of L. Thus:

Theorem 1.2. Let L = L1 ∩ L2, ϕi(x) ∈ FmLi (i = 1, 2). Suppose that
|= (ϕ1 → ϕ2). Then there is a θ(x) of L such that |= (ϕ1 → θ) and |= (θ → ϕ2).
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As an application of Craig’s Interpolation Theorem (in the form applying to
formulas) we derive another classic result, which concerns definability of a relation
in all models of a theory.

Let L be a language, R a predicate symbol of n arguments no in L. Let
L1 = L ∪ {R}, and let T be a theory of L1. We say that R is (L - ) definable in T
iff there is a formula ϕ(x, . . . , xn−1) of L such that

T |= ∀x0 · · · ∀xn−1[Rx0 · · ·xn−1 ↔ ϕ(x)].

(Reference to L is sometimes suppressed).
Clearly if R is definable in T then the interpretation of R in any model of T is

uniquely determined by the interpretations of the other symbols (since it must be
whatever relation ϕ defines) — more formally, the following must hold:

(∗) if A,B |= T and A�L = B�L, then RA = RB (and so A = B).
The definability theorem of Beth states that the converse also holds.

Theorem 1.3. Let L1 = L ∪ {R} where R is an n-ary predicate symbol not in
L. Then R is L-definable in T iff (∗) holds for T , where T is any theory of L.

Proof. It suffices to show that (∗) implies the definability of R, so let us
suppose that (∗) holds. We wish to formulate (∗) in a syntactical manner. Let S
be another n-ary predicate symbol not in L1. Let R′ be the theory of L2 = L∪{S}
obtained from T by replacing R everywhere by S. Then T and T ′ are “the same”,
except one uses the symbol R where the other uses S. (∗) then precisely says that

T ∪ T ′ |= ∀x[Rx↔ Sx].

In particular, then
T ∪ T ′ |= (Rx→ Sx).

By compactness there are sentences σ ∈ T, σ′ ∈ T ′ such that

{σ, σ′} |= (Rx→ Ss),

i.e.,
|= (σ ∧Rx)→ (σ′ → Sx).

Interpolation applied to ϕ1 = (σ ∧ Rx) and ϕ2 = (σ′ → Sx) yields a formula
θ(x) such that

|= (σ ∧Rx)→ θ(x) and |= θ(x)→ (σ′ → Sx).

Therefore T |= (Rx → θ) and T ′ |= (θ → Sx). Replacing S everywhere by R
in the last consequence yields T |= (θ → Rx).

Thus we have T |= (Rx↔ θ(x)), and so R is L-definable in T , as desired. �

Beth’s Definability Theorem also applies to functions — simply consider an
n-ary function as an (n + 1)-ary predicate. The defining formula then defines the
graph of the function.

The following easy fact is sometimes useful.

Lemma 1.4. Assume R is L-definable in T . Then every L-structure A which
is a model of T ∩SnL can be expanded to an L∪{R}-structure A1 which is a model
of T .

Proof. Simply define RA1 = ϕA, where ϕ is the L-formula defining R in T .
This works since for any sentence θ of L1 we have T |= θ iff T |= θ′, where θ′ is an
L-sentence resulting from θ by replacing R throughout by ϕ. �
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Specific, direct applications of Beth’s theorem are hard to come by. The most
striking applications are of the contrapositive — i.e., from the non-definability of
R in T to conclude (∗) fails. The non-definability might be shown directly or use
the contrapositive of the above lemm.

Example 1.1. L = {≤}, L1 = L ∪ {+}, T = Th(〈ω,≤,+〉). Then A =
〈ω + Z,≤〉 |= T ∩ SnL but A cannot be expanded to a model of T , hence there is
some B = 〈B,≤B〉 ≡ 〈ω,≤〉 such that there are 2 different functions +1 and +2

on B such that 〈B,≤B,+1〉 ≡ 〈B,≤B,+2〉 ≡ 〈ω,≤,+〉.

Example 1.2. Similarly, for some 〈B,≤B,+B〉 there are 2 different ·1, ·2 with
〈B,≤B,+B, ·1〉 ≡ 〈B,≤B,+B, ·2〉 ≡ 〈ω,≤,+, ·〉.

2. Saturated Models

This section concerns generalizations of the material in 5.2 to uncountable
cardinals. For simplicity, we consider only theories in countable languages in this
section. This restriction is not essential, but without it we would have to make
reference to the cardinality of the language in our results, and proofs.

The fundamental definitions are as follows:

Definition 2.1. (a) Let κ ≥ ω. A model A is κ-saturated iff for every X ⊆ A,
if |X| < κ then AX realizes all L(X) types (in one variable) consistent with
Th(AX).

(b) Let T be a complete theory and κ > ω. A is a κ-universal model of T iff A |= T
and whenever B |= T , |B| < κ then B ∼=≺ A.

In this terminology, the theorem on pg. 92 states that on ω-saturated model
of T is ω1-universal. The generalization we obtain replaces ω by any κ ≥ ω and ω1

by κ+.

Example 2.1. L has just a unary predicate P , T is the complete theory stating
that both P and ¬P are infinite. Then all models of T are ω-saturated, but of the e
models of T of cardinality ω1, only the one in which both P and ¬P are uncountable
is ω1-saturated.

Example 2.2. 〈R,≤〉 is ω-saturated but not ω1-saturated.

We first require a better notation for dealing with models of the form AX .

Notation 2. Let X = {aξ : ξ < α} ⊆ A. Then (A, aξ)ξ<α is the expansion of
A to the language L ∪ {cξ : ξ < α}, where cξ’s are distinct constants symbols not
in L. By convention, if in the same context we also have (B, bξ)ξ<α this is also a
structure for the same language, and thus the statements (A, aξ)ξ<α ≡ (B, bξ)ξ<α
and (A, aξ)ξ<α ∼= (B, bxi)ξ<α are unambiguously defined.

We can now follow the argument in 5.2, although using transfinite recursion,
to establish the following:

Theorem 2.1. Let A |= T be κ-saturated (κ ≥ ω). Then A is a κ+-universal
model of T .

Proof. Let B |= T , |B| ≤ κ. Then B = {bξ : ξ < κ}. We define, by recursion
on ξ < κ, elements aξ ∈ A such that for every α ≤ κ we have:

(B, bξ)ξ<α ≡ (A, aξ)ξ<α.
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Then the map sending bξ to aξ (all ξ < κ) will be an elementary embedding of
B into A.

The base of our induction α = 0, is the statement B ≡ A, which holds since T
is complete.

We break the inductive step into two cases — successor and limit ordinals.
First case: α = β+1. The inductive hypothesis is that (B, bξ)ξ<β ≡ (A, aξ)ξ<β .

We need to define aβ so that (B, bξ)ξ≤β ≡ (A, aξ)ξ≤β , which we do by picking aβ
to realize in (A, aξ)ξ<β the complete (L ∪ {cξ : ξ < β})-type of bβ in (B, bξ)ξ<β .
This can be done since A is κ-saturated and |{aξ : ξ < β}| ≤ |β| ≤ β < κ.

Second case: If α is a limit ordinal then our inductive hypothesis is that for
every β < α (B, bξ)ξ<β ≡ (A, aξ)ξ<β . It follows that (B, bξ)ξ<α ≡ (A, aξ)ξ<α, since
a sentence of L ∪ {cξ : ξ < β} can only contain finitely many constants and hence
really is a sentence of L ∪ {cξ : ξ < β} for some β < α. This completes the limit
ordinal step. �

This proof is really half of a back-and-forth argument (of length κ rather than
ω). Adding the other half of the argument we obtain this uniqueness result, details
of which are left to the reader.

Theorem 2.2. If A,B are both κ-saturated, |A| = |B| = κ and A ≡ B, then
A ∼= B.

Terminology 1. If A is κ-saturated when κ = |A|, we say that A is saturated.

In 5.2 we characterized the theories having countable saturated models. The
existence of uncountable saturated models is complicated by set theoretical consid-
erations. The following lemma is clear from the definition.

Lemma 2.3. If T has a κ+-saturated model of cardinality κ+ then for every
model A of T and every X ⊆ A with |X| ≤ κ, there are at most κ+ complete types
of L(X) consistent with Th(AX).

The problem is that there may be 2κ complete types consistent with a theory
in a language of cardinality κ. In this fashion we see, for example:

Corollary 2.4. If Th(〈Q,≤〉) has a saturated model of cardinality of ω1, then
2ω = ω1.

We are in even worse shape with singular cardinals since one can easily show, for
example, that Th(〈Q,≤〉) has no saturated model of cardinality λ, for any singular
λ. Hint to the reader: find a set X ⊆ A where |X| = cf(λ) < λ and a type of L(X)
not realized in AX , for any A ≡ 〈Q,≤〉, |A| = λ.

The set-theoretical problem pointed out above is the only difficulty with κ+-
saturated models.

Theorem 2.5. Every model of cardinality ≤ 2κ has a κ+-saturated elementary
extension of cardinality ≤ 2κ.

Proof. Here too we follow the proof of the corresponding existence result in
5.2, with additional cardinality arguments. We first show:

(1) Let |B| ≤ 2κ, X ⊆ B, |X| ≤ κ. Then B ≺ B′ for some B′ such that
|B′| ≤ 2κ and B′X realizes every L(X)-type consistent with Th(BX) = Th(B′X).

First note that |L(X)| ≤ κ hence there are at most 2κ L(X)-types consistent
with Th(BX). By Compactness and the Löwenheim-Skolem Theorem we can find
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a model B′ such that B ≺ B′, B′X realizes each of the L(X)-types consisten with
Th(BX), and |B′| ≤ 2κ (cf. the Theorem on pg 73), thus establishing (1). Next we
derive:

(2) Let |B| ≤ 2κ. Then there is some B∗ such that B ≺ B∗, |B∗| ≤ 2κ

and for every X ⊆ B, |X| ≤ κ, B∗X realizes every L(X)-type consistent with
Th(BX) = Th(B∗X).

We first establish a necessary fact about cardinality, namely:

|{X : X ⊆ B, |X| ≤ κ}| ≤ 2κ.

This is true since {X : X ⊆ B, |X| ≤ κ} � κB and |κB| ≤ (2κ)κ = 2κ. Thus we
can write {X : X ⊆ B, |X| ≤ κ} = {Xξ : ξ < 2κ}. Finally, we define an elementary
chain by: B0 = B,Bξ+1 = (Bξ)

′,Bη =
⋃
ξ<η ξ for limit η ≤ 2κ, where (Bξ)

′ is

the result applying (1) to Bξ, for the set Xξ. One easily establishes by induction
that |Bξ| ≤ 2κ for all ξ ≤ 2κ (the limit ordinal cases are the only ones requiring
attention), and so B∗ = B2κ is as desired.

Finally, let A be given with |A| ≤ 2κ. We define an elementary chain Aξ, ξ ≤ κ+,
by A0 = A,Aξ+1 = (ξ)∗, Aη =

⋃
ξ<η Aξ for limit ordinals η ≤ κ+. Once again,

it is easy to see that A# = Aκ+ has cardinality ≤ 2κ. If X ⊆ A#, X ≤ κ then
X ⊆ Aξ for some ξ < κ+ because κ+ is regular, hence every L(X)-type consistent

with Th(A#
X) is realized in (Aξ+1)X . Thus A# is κ+-saturated. �

The reader should try to find an ω1-saturated elementary extension of 〈R,≤〉
of cardinality 2ω.

One more reason for the seductive appeal of the GCH is the following obvious
consequence of the preceding:

Corollary 2.6. Assume GCH. Then every theory has a saturated model of
cardinality κ+ for every κ ≥ ω.

Knowing that a theory has κ+-universal models is not terribly useful. But
knowing that it has saturated models is very useful. One can give, for example, a
simple proof of the Interpolation Theorem of the preceding section assuming the
existence of saturated models. As the reader is left to check, it suffices to establish
the following lemma (due to A. Robinson who used it to derive Beth’s Theorem):

Lemma 2.7. Let L = L1 ∩L2, let T1, T2 be theories of L1,L2 r‘espectively, and
suppose T = (T1 �L ∪ T2 �L) is consistent. Then T1 ∪ T2 has a model.

Proof. One first shows (using compactness) that there is some complete L-
theory T ∗ ⊇ T such that (T1 ∪ T ∗) and (T2 ∪ T ∗) both have models. Assume
(T ∪ T ∗) and (T2 ∪ T ∗) both have saturated models of cardinality κ. Let these
saturated models be A1 and A2 respectively. Then A1 � L and A2 � L are also
saturated and both models of T ∗, hence A1 �L ∼= A2 �L by the uniqueness theorem.
One then defines A |= (T1 ∪ T2 ∪ T ∗) such that A �L1 = A1 and A �L2

∼= A2 as in
the proof in the preceding section. �

Thus, we have another proof of Interpolation, under the set theoretic assump-
tion that κ+ = 2κ for some κ ≥ ω. There are ways of using essentially this same
proof and avoiding the additional assumption, but we will not pursue them here.

The spirit in which saturated models were introduced originally involved unique-
ness less than their acting as a sort of “universal domain” for a theory T . That
is, fixing a sufficiently large saturated model of T , one could study the models of
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T just by looking at elementary submodels of this fixed model. Some arguments
require the existence of many automorphisms.

Definition 2.2. A is strongly κ-homogeneous (κ ≥ ω) iff: for every α < κ and
for all aξ, a

′
ξ ∈ A for ξ < α, if (A, aξ)ξ<α ≡ (A, a′ξ)ξ<α then (A, aξ)ξ<α ∼= (A, a′ξ)ξ<α.

Definition 2.3. A is strongly κ-saturated iff A is κ-saturated and strongly
κ-homogeneous.

As a consequence of the proof of uniqueness we see:

Corollary 2.8. If A is saturated and |A| = κ then A is strongly κ-saturated.

The κ+-saturated models of cardinality 2κ we have constructed are not auto-
matically strongly κ+-saturated. We can make them strongly κ+-saturated by use
of the following result in our construction.

Lemma 2.9. Assume that (A, aξ)ξ<α ≡ (A, a′ξ)ξ<α. Then there is some B such

that A ≺ B, |B| = |A| and (B, aξ)ξ<α ∼= (B, a′ξ)ξ<α.

We leave the proof of this lemma to the reader with the following hint: define
an elementary chain An, n ∈ ω, by A0 = A and An+1 is an elementary extension of
An such that (An+1, a)a∈An ≡ (An+1, h(a))a∈An for some map h with h(aξ) = a′ξ
for all ξ < α.

The existence result easily follows:

Theorem 2.10. Every model of cardinality ≤ 2κ has a strongly κ+-saturated
elementary extension of cardinality ≤ 2κ.

3. Skolem Functions and Indescernables

For any model A and any X ⊆ A there is a well-defined submodel of A generated
by X (provided either X 6= ∅ or the language contains individual constants), that
is a submodel B ⊆ A such that X ⊆ B and B ⊆ B′ for every B′ ⊆ A with X ⊆ B′.
This is not in general true for elementary submodels, however. It would be true if
A had the property that B ⊆ A implies B ≺ A, since then the submodel generated
by X would in fact be the elementary submodel generated by X. In this section
we show that any theory T of a language L can be expanded in a natural way to a
theory T ∗ in a larger language L∗ formed by adding “Skolem functions” such that
all models of T ∗ have the above stated property.

Definition 3.1. Let A be a model for some language L, and let X ⊆ A.

(a) H(X), the hull of X in A, is the subset ofA obtained by closingX∪{cA : c in L}
under FA for every F of L.

(b) H(X) is the submodel of A whose universe = H(X), provided H(X) 6= ∅.

Note that the model H(X) exists by the Lemma on page 74, when H(X) 6= ∅.
The following Lemma is easily established.

Lemma 3.1. Given A and X ⊆ A:

(1) |H(X)| ≤ max(|X|, |L|).
(2) H(X) is the smallest B ⊆ A with X ⊆ B, provided H(X) 6= ∅.

Our goal is to establish the following:
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Theorem 3.2. Let T be a theory in a language L. Then there is a theory T ∗

in a language L∗ such that

(i) L ⊆ L∗, T ⊆ T ∗.
(ii) |L∗| = |L|

(iii) every model of T can be expanded to a model of T ∗.
(iv) if A∗ |= T ∗ and B∗ ⊆ A∗ then B∗ ≺ A∗.

The language L∗ and theory T ∗ of this theorem will be defined as unions of
chains {Ln}n∈ω, {Tn}n∈ω which “approximate” the property in (iv) more and more
closely. We go from Ln and Tn to Ln+1 and Tn+1 by the following result.

Proposition 3.3. Let T be a theory of L. Then there is a theory T ′ in L′ such
that:

(i) L ⊆ L′, T ⊆ T ′
(ii) |L′| = |L|

(iii) every model of T can be expanded to a model of T ′

(iv) if A′ |= T ′ and B′ ⊆ A′ then B′ �L ≺ A�L.

Assuming the Proposition the Theorem easily follows: we define L0 = L, T0 =
T , Ln+1 = (Ln)′, Tn+1 = (Tn)′,L∗ =

⋃
n∈ω Ln and T ∗ =

⋃
n∈ω Tn. (i)-(iv) of the

Theorem follow from the corresponding properties of the Proposition, making use
of the elementary fact that every formula of L∗ will be a formula of some Ln, n ∈ ω,
since it can contain just finitely many symbols. Thus, we now turn to the:

Proof of the Proposition. L′ is the language which adds to L a new n-
place function symbol F∃yϕ for every formula ∃yϕ(y, x0, . . . , xn−1) of L and a new
constant symbol c∃yϕ for every sentence ∃yϕ(y) of L.

We let Σ′ consist of all L-sentences of the following forms:

∃yϕ(y)→ ϕ(c∃yϕ)

∀x0 · · · · · ·xn−1[∃yϕ→ ϕ(F∃yϕ(x0, . . . , xn−1), x0, . . . , xn−1)],

for all formulas ∃yϕ of L. Finally, T ′ = CnL′(T ∪ Σ′). The requirements of the
Proposition are easily verified, using the Axiom of Choice for (iii) and the Lemma
on page 77 for (iv). �

The functions (and constants) added to L to obtain L′ are called Skolem func-
tions for L, and the set Σ′ is the set of Skolem axioms for L. Thus the language
L∗ constructed in the proof of the Theorem has Skolem functions for L∗, and
T ∗ = T ∪ Σ∗ where Σ∗ is the set of Skolem axioms for L∗.

A theory T ′ having the property that whenever A |= T ′ and B ⊆ A then B ≺ A
is said to have Skolem functions, even if T ′ is not constructed explicitly by adding
“Skolem functions” to some theory in a smaller language. If A is a model of a
theory having Skolem functions then H(X) ≺ A for any X ⊆ A and H(X) is called
the Skolem hull of X in A. Also, X ⊆ Y ⊆ A implies H(X) ≺ H(Y ).

As a consequence of the existence of expansions with Skolem functions we note
an improved Löwenheim-Skolem result.

Theorem 3.4. Given any A, any X ⊆ A, and any infinite cardinal κ such that
max(|L|, |X|) ≤ κ ≤ |A| there is some B ≺ A such that X ⊆ B and |X| = κ.
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Proof. Let T = Th(A) and let L∗, T ∗ be as in the Theorem, and let A∗ be
an expansion of A to a model of T ∗. We may suppose |X| = κ. Thus |H∗(X)| = κ
(since |L∗| = |L| ≤ κ), and so B = H∗(X)�L as desired. �

In the remainder of this section we study Skolem hulls of indiscernible sets of
elements, and derive several important consequences concerning models of arbitrary
theories.

Definition 3.2. Let X ⊆ A and let ≤ be a linear order of X. Then X is a
set of indiscernibles (with respect to ≤) for A iff for all a1, . . . , an, a

′
1, . . . , a

′
n ∈ X

such that a1 < a2 < · · · < an and a′1 < a′2 < · · · < a′n we have (A, a1, . . . , an) ≡
(A, a′1, . . . , a

′
n).

Note that the ordering of X is not assumed to be one of the relations of A, or
even definable in A. Also nothing is assumed about the relative positions in the
ordering of ai’s and a′i’s. Thus, if a1 < a2 < a3 < a4, all in X, indiscernibles for A,
we have, e.g.,

(A, a1) ≡ (A, a2) ≡ (A, a3) ≡ (A, a4)

(A, a1, a2) ≡ (A, a1, a3) ≡ (A, a1, a4) ≡ (A, a2, a3)

etc. However, one does not necessarily have (A, a1, a2) ≡ (A, a4, a3).
Probably the simplest non-trivial example of an infinite set of indiscernibles is

X = A in any model A ≡ (Q,≤), where (in this case, though not in general) the
ordering on X is ≤A. For another example, let L have just a binary predicate E, and
let T be the ω-categorical theory asserting that E is an equivalence relation with
infinitely many equivalence classes, all of them infinite. Then in any model A of T
one can choose two radically different sets of indiscernibles, namely: X containing
just elements from one equivalence class or Y containing only one element from each
equivalence class. In either case the ordering is arbitrary. Note that AA |= ¬Ea1a2

for all a1, a2 ∈ Y with a1 6= a2.
The following, possibly surprising, result has many important consequences.

Theorem 3.5. Let T be a complete theory with infinite models. Let (B,≤) be
any linear ordering. Then there is some model A of T such that B ⊆ A and B is a
set of indiscernibles for A.

Proof. We expand the language L of A to L(B) = L ∪ {b : b ∈ B}. Let Σ∗

be the result of adding to T all sentences of L(B) of the form

(ϕ(b1, . . . , bn)↔ ϕ(b
′
1, . . . , b

′
n))

where ϕ(x1, . . . , xn) is a formula of L and b1 < · · · < bn, b
′
1 < · · · < b′n, all from

B. Any model of Σ∗ will be a model of T with the required indiscernibles. We use
compactness to show Σ∗ has a model. Let Σ0 ⊆ Σ∗ be finite. Then Σ0 contains
only finitely many of the added sentences. Thus there is a finite B0 ⊆ B and a
finite set Φ0 of L-formulas such that Σ0 is contained in T together iwth only the

setences (ϕ(b1, . . . , bn)↔ ϕ(b
′
1, . . . , b

′
n)) for ϕ ∈ Φ0 and b1 < · · · < bn, b

′
1 < · · · < b′n

all in B0. We may assume (by adding dummy variables) that all formulas in Φ0

have the same number of free variables, say n. Let A be any model of T . We
show how to interpret the constants in B0 as elements of A so as to obtain a model
of Σ0. First let ≤ be any linear order of A. Let a2, . . . , an, a

′
1, . . . , a

′
n ∈ A where

a1 < a2 < · · · < an and a′1 < a′2 < · · · < a′n. We define {a1, . . . , an} ∼ {a′1, . . . , a′n}
to hold iff A |= [ϕ(a1, . . . , an) ↔ ϕ(a′1, . . . , a

′
n)] for every ϕ ∈ Φ0. Then ∼ is an
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equivalence relation on the collection A[n] of n-element subsets of A. Further (since
Φ0 is finite), this relation divides A[n] into finitely many equivalence classes. By
a classical result of combinatorics, “Ramsey’s Theorem”, there must (since A is
infinite) be an infinite set A0 ⊆ A such that all n-element subsets of A0 belong to
the same equivalence class. Thus, if we interpret the (finitely many) elements of
B0, listed in increasing order, by any elements of A0, also listed in increasing order,
we obtain a model of Σ0, as desired. �

Note that a set of indiscernibles X in A determines, for every n ∈ ω r {0}, a
unique complete n-type Φ(x1, . . . , xn) which is the complete type of any increasing
sequence of n elements of X in A. If Y is a set of indiscernibles in B, then we
say that X and Y have the same type, written tpA(X) = tpB(Y ), iff X and Y
determine exactly the same complete n-types for every n. The following result is
easily established, and thus is left to the reader:

Theorem 3.6. Let X be an infinite set of indiscernibles in A and let (Y,≤)
be any infinite linear ordering. Then there is some B such that Y is a set of
indiscernibles in B and tpA(X) = tpB(Y ). [In particular, A ≡ B].

In theories with Skolem functions, the Skolem hulls of sets of indiscernibles are
particularly well-behaved. The following summarises some of their most important
properties.

Theorem 3.7. Let T be a complete theory (of L) with Skolem functions. Let
A,B |= T and suppose X,Y are infinite sets of indiscernibles in A,B respectively
(with respect to ≤). Further, suppose that tpA(X) = tpB(Y ).

(1) H(X) and H(Y ) are models of T realizing precisely the same n-types of L, for
all n.

(2) If h is an order-preserving map of X into Y then h extends to a unique iso-
morphism h∗ of H(X) onto some elementary submodel of H(Y ) — in fact, onto
H({h(a) : a ∈ X}).

(3) If h is an order-preserving map of X onto itself, then h extends to a unique
automorphism of H(X).

Proof. First note that H(X) = {tA : t ∈ TmL, a1 < a2 < · · · < an all in X}
and there is a corresponding representation for H(Y ). Thus, let us suppose that
H(X) realizes some 1-type Φ(x). This means that for some t and a1 < · · · < an
in X we have Ax |= ϕ(tA(a1, . . . , an)) for every ϕ ∈ Φ. That is, ϕ(t(x1, . . . , xn))
belongs to the n-type of increasing sequences from X. Since we assumed that
tpA(X) = tpB(Y ) it follows that tB(b1, . . . , bn) realizes Φ(x) in H(Y ) for any
b1 < b2 < · · · < bn in Y . The same argument for types in more than one variable
establishes (1).

In a similar way, the extension h∗ needed in (2) can be seen to be the map
taking tA(a1, . . . , an) to tB(h(a1), . . . , h(an)), for a1 < · · · < an in X.

(3) follows immediately from (2). �

We can now establish the following very important result.

Theorem 3.8. Let T be a complete theory, in a countable language, having
infinite models. Then there is a countable collection T of complete types (in all
numbers of variables) such that for every κ ≥ ω T has a model of power κ which
realizes precisely the complete types in T .
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Proof. We first choose an extension T ∗ of T in L∗ as given by the Theorem
on pg 120. Note that L∗ is still countable. Let X be a countably infinite set of
indiscernibles in some model A∗ of T ∗. Let T be the collection of complete types
of L realized in H(X) � L. Then T is countable since H∗(X) is. Now given any
κ > ω let (Y,≤) be any linear ordering of cardinality κ. By the Theorem on pg
125, there is some model B∗ ≡ A∗ such that Y is a set of indiscernibles in B∗ and
tpB∗(Y ) = tpA∗(X). By Theorem (1) on pg 126, H∗(Y ) realizes precisely the same
complete L∗-types as H∗(X). In particular, H∗(Y )�L is a model of T which realizes
precisely the complete types in T , and has power κ. �

The reader should note that these are the first results which gives us any control
over building uncountable models analogous to the control which the omitting types
theorem yields over countable models. We are thus able to derive our first non-
trivial result on the number of uncountable models of a theory.

Corollary 3.9. Let T be a complete theory in a countable language, and
assume there are 2ω different complete types consistent with T . Then for every
κ ≥ ω T has at least 2ω non-isomorphic models of cardinality κ.

Another important application of indiscernibles is the following:

Theorem 3.10. Let T be a complete theory, with infinite models, in a countable
language. Then for every κ ≥ ω T has a model of cardinality κ with 2κ automor-
phisms.

Proof. As in the preceding Theorem we first expand T to a theory T ∗ with
Skolem functions. If (X,≤) is a linear ordering of power κ with 2κ automorphisms,
and X is indiscernible in B∗ |= T ∗, then H∗(X)�L is a model of T of cardinality κ
with 2κ automorphisms, by Theorem (3) on page 126. �

4. Some Applications

In this section we introduce no new techniques, but use previous material to
derive some standard results, which are interesting both in themselves and as exam-
ples of applications. Various further results in similar lines are mentioned briefly.

Our first topic concerns results connecting the syntactical form of a sentence
with properties of the class of models of the sentence. These are examples of
preservation theorems.

Definition 4.1. (1) A sentence θ is a universal sentence (or, ∀-sentence) iff θ
is ∀x0 · · · ∀xnα where α is open (i.e., has no quantifiers).

(2) A set Σ os sentences if preserved under substructures iff for every A |= Σ, if
B ⊆ A then B |= Σ.

It is easily verified that any set of universal sentences is preserved under sub-
structures. The theorem we are after states that the converse holds “up to equiva-
lence”. More precisely:

Theorem 4.1. A theory T is preserved under substructures iff T = Cn(Σ) for
some set Σ of universal sentences.

We will derive this from a result stating when a model can be embedded in
some model of T .

The following notation is useful:
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Definition 4.2. For any theory T we define T∀ = {∀-sentences θ : T |= θ}; in
particular, we write Th∀(A) for (Th(A))∀ = {∀-sentences θ : A |= θ}.

The Theorem on the preceding page is an immediate consequence (with Σ = T∀)
of the following result:

Theorem 4.2. B |= T∀ iff B ⊆ A for some A |= T .

Proof. From right to left follows by our original remark that ∀-sentences are
preserved under substructures. For the other direction, suppose B |= T∀. To
show that B can be embedded in some model of T is suffices (by the top Lemma
on page 77) to show that T ∪ ∆B has a model. If not then, by compactness,
T |= ¬α(b0, . . . , bn) for some open L(B)-sentence α(b0, . . . , bn) true on B. But then
T |= ∀x0 · · · ∀xn¬α(x0, . . . , xn), so ∀x0 · · · ∀xn¬α(x0, . . . , xn) ∈ T∀, a contradiction
to our hypothesis that B |= T∀. �

As a consequence, using compactness, we have the following:

Corollary 4.3. {σ} is preserved under substructures iff σ `a θ for some
universal sentence θ.

The following is an important consequence of the above Theorem:

Corollary 4.4. If BA |= Th∀(AA) then B ⊆ A′ for some A′ with A ≺ A′

(where A ⊆ B).

Note that a theory with Skolem functions is preserved under substructures,
hence has a set of universal axioms. Similar results hold for preservation relative
to another theory, where:

Definition 4.3. Σ is preserved under substructures relative to T iff for every
A |= T ∪ Σ, if B ⊆ A and B |= T then B |= Σ.

Corresponding to the first Corollary on the preceding page we have, for exam-
ple:

Theorem 4.5. {σ} is preserved under substructures relative to T iff T |= (σ ↔
θ) for some ∀-sentence θ.

We may also speak of a formula ϕ(x1, . . . , xn) being preserved, meaning that
ϕ(c1, . . . , cn) is preserved where c1, . . . , cn are new constants. As a consequence of
the preceding Theorem we thus obtain:

Corollary 4.6. ϕ(x) is preserved under substructures relative to T iff T |=
∀x[ϕ(x) ↔ θ(x)] for some ∀-formula θ(x) (where the notion of ∀-formula has the
obvious definition).

Many other varieties of preservation results are known, for example concerning
the following:

Definition 4.4. (1) A sentence θ is an ∀∃-sentence iff θ is ∀x1 · · · ∀xn∃y1 · · · ∃ymα(x, y)
where α is open.

(2) Σ is preserved under unions of chains iff whenever {Ai}i∈I is a chain, under ⊆,
of models of Σ then

⋃
i∈I Ai |= Σ.

The corresponding preservation theorem is:
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Theorem 4.7. T is preserved under unions of chains iff T = Cn(Σ) for some
set Σ of ∀∃-sentences.

The proof of the above Theorem, and the statements and proofs of its conse-
quences and variations, are left to the reader. We also do not mention the numerous
other preservation results concerning sentences preserved under homomorphism, di-
rect products, etc.

The next topic concerns theories for whose models substructure implies ele-
mentary substructure.

Definition 4.5. T is model complete iff for all A,B |= T if A ⊆ B then A ≺ B.

There are numerous natural examples of model complete theories, e.g. Th(〈Q,≤
〉); certainly if T has Skolem functions then T is model complete but the converse
fails.

Note that a model complete theory need not be complete, but there is a simple
sufficient condition for a model complete theory to be complete.

Lemma 4.8. Assume T is model complete and that there is some A |= T such
that A can be embedded in every model of T . Then T is complete.

Proof. If B |= T then A ∼=≺ B, hence A ∼=≺ B by hypothesis, so B ≡ A. �

Every theory can be expanded to a theory in a larger language which is model
complete; more importantly, this expansion can be done in such a way (roughly, by
adding only definable relations) that the new theory is “equivalent” to the old as
far as most properties of their models are concerned. This was not the case with
Skolem expansions.

Definition 4.6. Given any language L we define L# as L together with
a new n-ary predicate symbol Rϕ for every formula ϕ(x1, . . . , xn) of L with n
free variables.

(1) Σ# = {∀x[ϕ(x)↔ Rϕ(x)] : ϕ(x) of L}.

Lemma 4.9. (1) |L| = |L#|.
(2) Every L-structure A has exactly one expansion to an L#-structure A# |= Σ#.
(3) Cn(Σ# ∪ T ) is model complete, for any theory T of L.
(4) The following are equivalent: A ≺ B,A# ⊆ B#,A# ≺ B#.
(5) A ∼= B iff A# ∼= B#.

We leave the proof of the Lemma to the reader. The only part requiring much
argument is (3), for which one first proves (by induction) that for every formula
ψ(x) of L# there is a formula ϕ(x) of L such that Σ# |= (ψ ↔ ϕ), and hence
Σ# |= ∀x[ψ(x)↔ Rϕ(x)].

The Lemma implies that we can replace any T by the model complete theory
T# = Cn(T ∪Σ#) and not change, for example, the number of models in any power,
on the relations of elementary embeddability between models.

There is a simple characterization of model complete theories which is useful
in determining whether a specific theory is model complete.

Theorem 4.10. Given a theory T , the following are equivalent:

(1) T is model complete,
(2) For any A,B |= T if A ⊆ B then BA |= Th∀(AA) — i.e., whenever ϕ(x0, . . . , xn−1)

is a universal formula of L and AA |= ϕ(a0, . . . , an−1) then BA |= ϕ(a0, . . . , an−1).
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Proof. (1) clearly implies (2). For the converse, suppose (2) holds. We define
two elementary chains {An}n∈ω and {Bn}n∈ω which “alternate” as follows:

Let A0 = A and B0 = B, where A,B |= T are given and A ⊆ B. By (2),
(B0)A0

|= Th∀(A0A0
), hence there is some A1 such that A0 ≺ A0 and B0 ⊆ A1 — by

the Corollary on the bottom of pg 130. Then, by (2) again, (A1)B0
|= Th∀(B0B0

),
hence there is some B1 such that B0 ≺ B1 and A1 ⊆ B1. Continuing in this way
we obtain elementary chains {An}n∈ω and {Bn}n∈ω such that An ⊆ B ⊆ An+1 for
all n. Thus we have A∗ =

⋃
n∈ω An =

⋃
n∈ωBn = B∗. But A ≺ A∗ and B ≺ B∗,

so we must have A ≺ B, since A ⊆ B. �

In the next result, whose proof is left to the reader, we list two other conditions
equivalent to being model complete — the first of which is the source of the name.

Theorem 4.11. The following are equivalent:

(1) T is model complete,
(2) For any A |= T , (T ∪∆A) is a complete theory in L(A),
(3) For every formula ϕ(x) there is some universal formula θ(x) such that T |=

(ϕ↔ θ).

Since a model complete theory is preserved under unions of chains, it must have
a set of ∀∃ axioms, by the Theorem on the bottom of page 131. Easy examples
show that not all such theories are model complete, but the following result gives
an interesting sufficient condition for model completeness.

Theorem 4.12. Assume T is preserved under unions of chains and that all
uncountable models of T are ω-saturated. Then T is model complete.

It is known that if T , in a countable L, is κ-categorical for some κ ≥ ω then
all uncountable models of T are ω-saturated. The converse has been conjectured
— although this has been established for several important classes of theories, the
question has still not been completely settled.

This last theorem can be used to show that the theory of algebraically closed
fields (in {+, ·, 0, 1}) is model complete.

Finally, we study the class of models of Th(〈ω,≤, 0, S〉), where s is the im-
mediate successor function on ω. This theory is an expansion by definitions of
Th(〈ω,≤〉) so all our results translate over to the theory in the smaller language,
but we leave this translation to the reader.

We will exhibit a finite set of axioms for Th(〈ω, 0, s〉) and show this theory is
model complete. This will enable us to determine the number of models in each
cardinality of this theory and determine how they can be related under elementary
embedding.

Let Σω be the set of sentences (in ≤, 0, s) saying that ≤ is a linear order, 0 is
the first element in the order, sx is the immediate successor in the order of x for
any x, and 0 is the only element which does not have an immediate successor.

Then every model of Σω begins with a copy of ω and is then followed by some
number of copies of Z, linearly ordered in any way, and 0, s have their intended
interpretations. Conversely, any such structure is a model of Σω. Note the following:

Lemma 4.13. Assume A |= Σω, a1, a2 ∈ A and {a ∈ A : a1 ≤A a ≤A≤ a2}
is infinite. Then A ≺ B for some B such that {b ∈ B r A : a1 ≤B b ≤B a2} is
infinite.



95

Proof. B is any elementary extension of A realizing the type which says
a1 < x, x < a2, and there are infinitely many elements between a1 and x and
between x and a2. �

We can now show that Σω is the desired set of axioms.

Theorem 4.14. (1) Cn(Σω) is model complete.
(2) Cn(Σω) = Th(〈ω,≤, 0, s〉).

Proof. (1) Let A,B |= Σω, A ⊆ B. By the Theorem on page 134 it suffices to
show that BA |= Th∀(AA). So let α(x0, . . . , xn−1, y0, . . . , ym−1) be an open formula
of L and let a0, . . . , an−1 ∈ A. We need to show that if BA |= ∃y¬α(a0, . . . , an−1, y)
then also AA |= ∃y¬α(a0, . . . , an−1, y). So, let b0, . . . , bm−1 ∈ B be such that
BB |= ¬α(a0, . . . , an−1, b0, . . . , bm−1). If bi 6∈ A then b must be “infinitely far” (in
the sense of ≤B) from every element of A. By repeated application of the preced-
ing Lemma we obtain A ≺ A′ which has added elements in every “gap” inhabited
by b0, . . . , bm−1. Thus, there are elements a′0, . . . , a

′
m−1 in A′ such that A′A′ |=

¬α(a0, . . . , an−1, a
′
0, . . . , a

′
m−1), since all α can specify is the ordering and distances

(finite) between elements. Thus in particular, AA |= ∃y¬α(a0, . . . , an−1, b) as de-
sired.

(2) follows from the Lemma on page 132, using A = 〈ω,≤, 0, 2〉. �

What this tells us is the following:

(a) every linear ordering (including the empty order) determines a model of Th(〈,≤
, 0, s〉) in which the copies of Z are so ordered;

(b) non-isomorphic linear orderings determine non-isomorphic models of Th(〈ω,≤
, 0, s〉);

(c) one model of Th(〈ω,≤, 0, s〉) can be elementarily embedded in another iff the
linear ordering of the Z blocks in the first can be (isomorphically) embedded
in the corresponding linear ordering in the second.

Thus, by looking at appropriate linear orderings we derive results about the
models of Th(〈ω, 0, s〉) under elementary embedding. The main results we obtain
are as follows:

(1) for every κ ≥ ω, Th(〈ω,≤, 0, s〉) has 2κ non-isomorphic models of cardinality
κ;

(2) Th(〈ω,≤, 0, s〉) has 2ω non-isomorphic countable ω1-universal models;
(3) Th(〈ω,≤, 0, s〉) has two countable models, realizing precisely the same types,

neither of which can be elementarily embedded in the other.

Note that it follows from [(1) and] (2) that Th(〈ω,≤, 0, s〉) has 2ω non-isomorphic
countable models despite the fact that there are only countably many complete
types consistent with Th(〈ω,≤, 0, s〉).

5. Exercises

(1) Let Lnl = {E} where E is a binary relation symbol. Let A be the countable
L-structure in which EA is an equivalence relation on A with exactly one EA

class of size n for every positive integer n but with no infinite EA-classes. Define
T = Th(A).
(a) Prove or disprove: T is model complete.
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(b) Prove that A is a prime model of T .
(c) Prove that T is not ω-categorical.



APPENDIX A

Appendix A: Set Theory

The natural numbers (that is, non-negative integers) are used in two very dif-
ferent ways. The first way is to count the number of elements in a (finite) set. The
second way is to order the elements in a set–in this way one can prove things about
all the elements in the set by induction. These two roles of natural numbers both
are generalized to infinite numbers, but these are split into two groups according to
the function they perform: cardinal numbers (to count) and ordinal numbers (to
order). The basic facts and concepts are surveyed in this Appendix.

1. Cardinals and Counting

It was noted as long ago as Galileo that (some) infinite sets can be put into one-
to-one correspondence with proper subsets of themselves, and thus, for example,
that the set of integers may be considered as having the same “size” as the set
of even integers. However no serious investigation into the “sizes” of infinite sets,
on comparing them, was undertaken until Cantor, in the second half of the 19th

century, created set theory, including both cardinal and ordinal numbers.
The basic definitions about comparing the sizes of sets (including finite) are as

follows:

Definition 1.1. (i) X ∼ Y (X and Y are equivalent, or have the “same
number” of elements) iff there is some function mapping X one-to-one onto Y .
(ii) X � Y (X has “at most as many” elements as Y ) iff there is some function
mapping X one-to-one into Y . (iii) X ≺ Y (X has strictly “fewer” elements than
Y ) iff X � Y but not X ∼ Y .

The following proposition is certainly essential if one is to think of � as some
sort of ordering on sets. It was not proved, however, until the end of the 19th

century.

Proposition 1.1. If X � Y and Y � X then X ∼ Y .

All the basic facts about size comparisons could be expressed by the above
notation but this would be quite clumsy. Instead certain sets, called cardinal num-
bers, are picked out so that for every set X there is exactly one cardinal number κ
such that X ∼ κ. We then call κ the cardinality of X and write |X| = κ. |X| ≤ |Y |
means X � Y and |X| < |Y | means X ≺ Y . Notice that |κ| = κ if, and only if, κ
is a cardinal number.

The first cardinal numbers are defined as follows:

97
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0 = ∅,
1 = {0},
2 = 1 ∪ {1},
...

n+ 1 = n ∪ {n+ 1}
...

ω = {0, 1, . . . , n, . . .} is defined as the smallest set containing 0 and such that
if x ∈ ω then x ∪ {x} ∈ ω.

Notice that ω+1 = ω∪{ω} cannot also be a cardinal number since ω ∼ ω∪{ω}.

Definition 1.2. (a) X is finite iff X ∼ n for some n ∈ ω (|X| ∈ ω). (b) X is
countable iff X � ω (i.e. |X| ≤ ω).

Lemma 1.2. (i) X is finite iff |X| < ω. (ii) X is countable and infinite iff
|X| = ω.

[The essential content of this lemma is that all cardinals less than ω in fact
belong to ω].

One of Cantor’s fundamental discoveries is that there are infinite sets which
are not equivalent, and in fact that there can be no biggest cardinal number.

Definition 1.3. The power set of X, is defined by P(X) = {Y | Y ⊆ X}.

Theorem 1.3. For ever X, X ≺ P(X).

Proof. Obviously, X � P(X). Suppose that X ∼ P(X), say that h maps
X bijectively onto P(X). Let D = {x ∈ X| x /∈ h(x)}. Then D = h(d) for some
d ∈ X. But d ∈ D iff d /∈ h(d) = D, which is a contradiction. �

Thus, there must be cardinals κ such that ω < κ. We must put off defining
them, however, until after we introduce ordinal numbers–we also should admit that
we will need the Axiom of Choice (AC) to define cardinal numbers in general.
Recall that AC states that if X is a set of non-empty sets, then there is a function
f defined on X such that f(x) ∈ x for every x ∈ X.

It is important to know that many set-theoretic operations lead from countable
sets to countable sets.

Definition 1.4. (a) YX is the set of all functions f with domain Y and range

a subset of X. (b)
ω
^X =

⋃
n∈ω nX is the set of all finite sequences of elements

of X (thinking of a sequence of length n as a function defined on n); an alternate
notation is ω>X.

Theorem 1.4. If X is countable then so is
ω
^X.

Proof. It suffices to show that
ω
^ω � ω, which follows by using the one-to-one

map which sends (k0, . . . , kn−1) to 2k0+1 ·3k1+1 · · · · pkn−1+1
n−1 where pj is the jth odd

prime. �

Corollary 1.5. If X,Y are countable so are X ∪ Y and X × Y .
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Theorem 1.6. (AC) If Xn is countable for every n ∈ ω then
⋃
n∈ωXn is also

countable.

ω is, in fact, the the smallest infinite cardinal, although the proof requires the
axiom of choice.

Proposition 1.7. (AC) If X is infinite then ω � X.

The analogues of + and · trivialize on infinite cardinals because of the preceding
corollary, but exponentiation is important.

Notation 3. If κ, λ are cardinal numbers then κλ is the cardinal |λκ|.

Lemma 1.8. For any X, P(X) ∼ X2.

Hence from Cantor’s Theorem we see the following corollary.

Corollary 1.9. If |X| = κ then |P(X)| = 2κ, and so κ < 2κ for every cardinal
κ.

However, increasing the base does not yield still larger cardinals.

Lemma 1.10. 2ω = nω = ωω = (2ω)ω, any n ∈ ω.

Proof. It suffices to show (2ω)ω ≤ 2ω, which follows since

ω(ω2) ∼ (ω × ω)2 ∼ ω2.

�

Without proof we list some facts about (uncountable) cardinalities, all depend-
ing on AC.

(1) If X is infinite then |X| = |
ω
^X|.

(2) If X,Y are infinite then |X ∪ Y | = |X × Y | = max(|X|, |Y |).
(3) If |I| ≤ κ and |Xi| ≤ κ for all i ∈ I, then |

⋃
i∈I Xi| ≤ κ,

for κ ≥ ω.
(4) (µκ)λ = µmax(κ,λ), for κ, λ ≥ ω, µ ≥ 2.
(5) For any cardinal κ there is a unique next cardinal called κ+, but

there is no set X such that κ � X � κ+.
(6) If X is a non-empty set of cardinal numbers, then

⋃
X is a

cardinal number and it is the first cardinal ≤ all cardinals in X.
(7) (κ+)λ = max(κλ, κ+) for κ, λ ≥ ω.
(8) For any sets X,Y either X � Y or Y � X, hence for any

cardinals κ, λ either κ ≤ λ or λ ≤ κ.
Some notation, based on (5), is the following which we will extend in the next

section: ω1 = ω+, ωn+1 = ω+
n , ωω =

⋃
n∈ω ωn–writing also ω0 = ω. An alternate

notation is to use the Hebrew letter “aleph”–thus ℵ0,ℵ1, . . . ,ℵω, . . ..
Note that ω1 ≤ 2ω and, in general, κ+ ≤ 2κ for each κ ≥ ω. It is natural to

enquire about whether equality holds or not.

Conjecture 1.1. Continuum Hypothesis (CH): 2ω = ω1

Conjecture 1.2. Generalized Continuum Hypothesis (GCH): For every
infinite cardinal κ, 2κ = κ+.
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CH and GCH are consistent with, but independent of, the usual axiioms of set
theory. In fact, each of the following is consistent with the usual axioms:

2ω = ω1, 2
ω = ω2, 2

ω = ωn for anyn ∈ ω
2ω = ωω)+, 2ω = (ωω)++, . . .

We can, however, prove that 2ω 6= ωω since we have (ωω)ω > ωω.
Some further facts about cardinals will be presented at the end of the next

section.

2. Ordinals and Induction

The principles of proof by induction and definition by recursion on the natural
numbers are consequences just of the fact that ω is well-ordered by the usual order.

Definition 2.1. (X,≤) is a well-ordering iff ≤ is a linear order of X and every
non-empty subset Y ⊆ X contains a least element, i.e. there is some a0 ∈ Y such
that a0 ≤ a for all a ∈ Y .

Theorem 2.1. (Proof by Induction) Let (X,≤) be a well-ordering. Let A ⊆ X
have the property that for every a ∈ X, if b ∈ A for all b < a then a ∈ A. Then
A = X.

Proof. If not, consider Y = X−A and obtain a contradiction to the definition.
�

The way this is used if one wants to prove that all elements of X have property
P is to let A be the set of all elements of X having property P .

In a similar vein, we see:

Theorem 2.2. (Definition by Recursion) Let (X,≤) be a well-ordering. Let Y
be any non-empty set and let g be a function from P(Y ) into Y . Then there is a
unique function f from X into Y such that for every a ∈ X,

f(a) = g({f(x)| x ∈ X,x < a}).

[Less formally, this just says that f(a) is defined in terms of the f(x)’s for
x < a.]

As in the previous section, we wish to pick out particular well-orderings, called
ordinal numbers, such that each well-ordering is isomorphic to exactly one ordinal
number. We do this so that the well order ≤ of the ordinal is as natural as possible–
that is, is give by ∈. The precise definition we obtain is as follows:

Definition 2.2. A set X is an ordinal number iff (i) x ∈ y ∈ X ⇒ x ∈ X
(equivalently, y ∈ X ⇒ y ⊆ X), and (ii) X is well-ordered by the relation ≤ defined
by: a ≤ b iff a ∈ b or a = b.

Condition (i) is frequently expressed by saying “X is transitive” and condition
(ii) is loosely expressed by saying “∈ well-orders X.” Note that technically X is
not a well-ordering, but (X,≤) is–however condition (ii) determines ≤ completely
from X. Notice, of course, that most sets aren’t even linearly ordered by ∈–
in fact, one of the usual (but somewhat technical) axioms of set theory implies
that if X is linearly ordered by ∈, then in fact it is well-ordered by ∈. Thus the
conditions in (ii) could be expanded to read: (ii)∗: x ∈ y, y ∈ z, z ∈ X ⇒ x ∈ z,
x, y ∈ X ⇒ x = y ∨ x ∈ y ∨ y ∈ x. (x /∈ x) follows by the usual axioms.
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Notice that the finite cardinal numbers and ω, as defined in the previous section,
are also ordinal numbers. The following lemma gives some of the basic properties
of ordinals. By convention, we normally use Greek letters α, β, . . . to stand for
ordinals.

Lemma 2.3. (1) If α is an ordinal and x ∈ α then x is an ordinal. (2) If α, β
are ordinals then either α ∈ β or α = β or β ∈ α. (3) If α is an ordinal then
α+ 1 = α∪{α} is an ordinal. (4) If X is a set of ordinals then

⋃
X is an ordinal.

Notation 4. If α, β are ordinals we write α < β for α ∈ β. Part (1) of the
lemma states that if α is an ordinal then α = {β| β is an ordinal, β < α}. The
ordinal α + 1 is the immediate successor of α–that is, α < α + 1 and there is no
ordinal β such that α < β < α+ 1. Similarly,

⋃
X is the least upper bound of the

set X of ordinals.

The class of all ordinals is not a set, but we can still think of it as well-ordered
by ≤. Further, we can prove things about the class of all ordinals by induction,
and define functions on ordinals by recursion.

Finally we note that ordinals do have the property for which we introduced
them.

Theorem 2.4. Let (X,≤) be a well-ordering. Then there is exactly one ordinal
α such that (X,≤) ∼= (α,≤).

We distinguish between two types of non-zero ordinals as follows:

Definition 2.3. α is a successor ordinal iff α = β + 1 for some ordinal β; α is
a limit ordinal iff α 6= 0 and α is not a successor ordinal.

Note that α is a limit ordinal iff α 6= 0 and
⋃
α = α. If X is any non-empty

set of ordinals not containing a largest ordinal, then
⋃
X is a limit ordinal.

It is frequently more convenient to break proofs by induction, or definitions
by recursion, into cases according to whether an ordinal is a successor or a limit
ordinal. For example, the recursive definition of ordinal addition is as follows:

if β = 0 then α+ β = α,
if β = γ + 1 then α+ β = (α+ γ) + 1,
if β is a limit then α+ β =

⋃
{α+ γ| γ < β}.

While most linear orderings (X,≤) are not well-orderings, there is no restriction
on the sets X in well-orderings, by the next theorem. This means that proof by
induction can (in principle) be applied to any set.

Theorem 2.5. (AC) For every set X there is some ≤ which well-orders X.

As an immediate consequence of the two preceeding theorems we have:

Corollary 2.6. (AC) For every set X there is some ordinal α such that
X ∼ α.

The ordinal α is not unique unless α < ω, since if ω ≤ α then α ∼ α + 1, but
the least such ordinal will be the cardinality of X.

Definition 2.4. κ is a cardinal number iff κ is an ordinal number and for every
α < κ we have α ≺ κ (equivalently, for every ordinal α such that α ∼ κ we have
κ ≤ α).
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This fills the lacuna in the preceding section. Note that the cardinal numbers
are well-ordered by ≤, and < is ∈ on cardinal numbers.

The way we will customarily use proof by induction on an arbitrary set X is
as follows: let |X| = κ so there is some one-to-one function h mapping κ onto X.
Write xα for h(α). Then X = {xα| α < κ} and we prove what we want about xα
by induction on α < κ. Note that for each α < κ we have |{xβ | β < α}| = α < κ.

The class of infinite cardinals can be indexed by the class of ordinals by using
the following definition by recursion:

ω(0) = ω,
ω(γ + 1) = (ω(γ))+,
β a limit ⇒ ω(β) =

⋃
{ω(γ)| γ < β}.

We normally write ωγ instead of ω(γ).
We finally need to introduce the concept of cofinality in order to make the

important distinction between regular and singular cardinals.

Definition 2.5. Let α, β be limit ordinals. Then α is cofinal in β iff there is
a strictly increasing function f ∈ αβ such that

⋃
{f(γ)| γ < α} = β.

Certainly β is confinal in β. ω is cofinal in every countable limit ordinal, but
ω is not cofinal in ω1.

Definition 2.6. Let β be a limit ordinal. Then the cofinality of β is cf(β)
equals the least α such that α is confinal in β.

Lemma 2.7. For any limit ordinal β, cf(β) ≤ β and cf(β) is a cardinal.

Definition 2.7. Let κ be an infinite cardinal. Then κ is regular iff κ = cf(κ).
κ is singular iff cf(κ) < κ.

Definition 2.8. κ is a successor cardinal iff κ = λ+ for some cardinal λ, i.e.
κ = ωβ+1 for some β.

Definition 2.9. κ is a limit cardinal iff κ ≥ ω and κ is not a successor cardinal,
i.e., κ = ωα for some limit ordinal α.

The division of infinite cardinals into regular and singular is almost the same
as the division into successor and limit.

Theorem 2.8. (1) Every successor cardinal is regular. (2) if κ = ωα is a limit
cardinal, then cf(κ) = cf(α)–hence if κ is regular then κ = ωκ.

Regular limit cardinals are called inaccessible cardinals–their existence cannot
be proved from the usual axioms of set theory.

With cofinalities we can state a few more laws of cardinal computation, con-
tinuing the list from the previous section.

(9) κcf(κ) > κ for every cardinal κ ≥ ω.
(10) Assume that |I| < cf(κ) and for every i ∈ I, |Xi| < κ.

Then |
⋃
i∈I Xi| < κ.

It is frequently tempting to assume GCH because it simplifies many computa-
tions, e.g.: Assuming GCH we have, for any cardinals κ, λ ≥ ω, κλ = κ if λ < cf(κ),
κλ = κ+ if cf(κ) ≤ λ ≤ κ, κλ = λ+ if κ ≤ λ.
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Appendix B: Notes on Validities and Logical
Consequence

1. Some Useful Validities of Sentential Logic

1) Excluded Middle
|= φ ∨ ¬φ
|= ¬(φ ∧ ¬φ)

2) Modus Ponens
φ, φ→ ψ |= ψ

3) Conjunction
φ, ψ |= φ ∧ ψ

4) Transitivity of Implication
φ→ ψ,ψ → θ |= φ→ θ

5) Plain Ol’ True as Day
φ ∧ ψ |= φ
φ |= φ ∨ ψ
φ→ (ψ → θ), φ→ ψ |= φ→ θ
φ |= ψ → φ
¬ψ |= ψ → φ
φ `a ¬¬φ

6) Proof by Contradiction
¬φ→ (ψ ∧ ¬ψ) |= φ
¬φ→ φ |= φ

7) Proof by Cases
φ→ ψ, θ → ψ, |= (φ ∨ θ)→ ψ
φ→ ψ,¬φ→ ψ |= ψ

8) De Morgan’s Laws
¬(φ ∨ ψ) `a ¬φ ∧ ¬ψ
¬(φ ∧ ψ) `a ¬φ ∨ ¬ψ

9) Distributive Laws
φ ∧ (ψ ∨ θ) `a (φ ∧ ψ) ∨ (φ ∧ θ)

103
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φ ∨ (ψ ∧ θ) `a (φ ∨ ψ) ∧ (φ ∨ θ)

10) Contraposition
φ→ ψ `a ¬ψ → ¬φ

11) The connectives ∧ and ∨ are both commutative and associative.

2. Some Facts About Logical Consequence

1) Σ ∪ {φ} |= ψ iff Σ |= φ→ ψ

2) If Σ |= φi for each i = 1, . . . , n and {φ1, . . . , φn} |= ψ then Σ |= ψ.

3) Σ |= φ iff Σ ∪ {¬φ} is not satisfiable.
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Appendix C: Gothic Alphabet

a Aa b Bb c Cc d Dd
e Ee f Ff g Gg h Hh
i Ii j Jj k Kk l Ll
m Mm n Nn o Oo p Pp
q Qq r Rr s Ss t Tt
u Uu v Vv w Ww x Xx
y Yy z Zz
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 Loš-Vaught, 70

atom, 74

atomic, 74, 75

axiom, 19, 37, 43

Axiom of Choice, 101

basic

formula, 67

cardinal numbers, 97

cardinality, 97

categoricity, 57

categorictiy, 70

chain, 69

union of, 69

elementary, 69

cofinality, 102

compactness, 17, 54

complete, 17, 50

formula, 74

type, 74

completeness, 63

connective, 7

connectives, 24

consequence, 43

consistent, 19, 40, 62

Continuum Hypothesis, 99

countable, 98

countably universal, 75, 77

De Morgan’s Laws, 103

deducible, 19

logically, 38

deduction, 37

Deduction Theorem, 20

Definition by Recurion, 100

diagram

basic, 67

elementary, 67

Distributive Laws, 103

elementarily equivalent, 43

embeddable, 67

elementarily, 67

equality, 24

Excluded Middle, 103

expression, 8

extension, 66

elementary, 66

finite, 98

finitely satisfiable, 18

finiteness, 41, 54

formula, 67

atomic, 25, 67, 70

generalization, 37, 39

Generalized Continuum Hypothesis, 99

Henkin set, 51

Henkin Sets, 63

inaccessible cardinals, 102

inconsistent, 40

independent, 20

induction, 100

proof by, 100

interpretation, 11

isomorphism, 44
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